Abstract:Recent advancements in Large Language Models (LLMs) have positioned them as powerful tools for clinical decision-making, with rapidly expanding applications in healthcare. However, concerns about bias remain a significant challenge in the clinical implementation of LLMs, particularly regarding gender and ethnicity. This research investigates the evaluation and mitigation of bias in LLMs applied to complex clinical cases, focusing on gender and ethnicity biases. We introduce a novel Counterfactual Patient Variations (CPV) dataset derived from the JAMA Clinical Challenge. Using this dataset, we built a framework for bias evaluation, employing both Multiple Choice Questions (MCQs) and corresponding explanations. We explore prompting with eight LLMs and fine-tuning as debiasing methods. Our findings reveal that addressing social biases in LLMs requires a multidimensional approach as mitigating gender bias can occur while introducing ethnicity biases, and that gender bias in LLM embeddings varies significantly across medical specialities. We demonstrate that evaluating both MCQ response and explanation processes is crucial, as correct responses can be based on biased \textit{reasoning}. We provide a framework for evaluating LLM bias in real-world clinical cases, offer insights into the complex nature of bias in these models, and present strategies for bias mitigation.
Abstract:Recent advancements in massively multilingual machine translation systems have significantly enhanced translation accuracy; however, even the best performing systems still generate hallucinations, severely impacting user trust. Detecting hallucinations in Machine Translation (MT) remains a critical challenge, particularly since existing methods excel with High-Resource Languages (HRLs) but exhibit substantial limitations when applied to Low-Resource Languages (LRLs). This paper evaluates hallucination detection approaches using Large Language Models (LLMs) and semantic similarity within massively multilingual embeddings. Our study spans 16 language directions, covering HRLs, LRLs, with diverse scripts. We find that the choice of model is essential for performance. On average, for HRLs, Llama3-70B outperforms the previous state of the art by as much as 0.16 MCC (Matthews Correlation Coefficient). However, for LRLs we observe that Claude Sonnet outperforms other LLMs on average by 0.03 MCC. The key takeaway from our study is that LLMs can achieve performance comparable or even better than previously proposed models, despite not being explicitly trained for any machine translation task. However, their advantage is less significant for LRLs.