Abstract:Network functions virtualization (NFV) enables telecommunications service providers to realize various network services by flexibly combining multiple virtual network functions (VNFs). To provide such services, an NFV control method should optimally allocate such VNFs into physical networks and servers by taking account of the combination(s) of objective functions and constraints for each metric defined for each VNF type, e.g., VNF placements and routes between the VNFs. The NFV control method should also be extendable for adding new metrics or changing the combination of metrics. One approach for NFV control to optimize allocations is to construct an algorithm that simultaneously solves the combined optimization problem. However, this approach is not extendable because the problem needs to be reformulated every time a new metric is added or a combination of metrics is changed. Another approach involves using an extendable network-control architecture that coordinates multiple control algorithms specified for individual metrics. However, to the best of our knowledge, no method has been developed that can optimize allocations through this kind of coordination. In this paper, we propose an extendable NFV-integrated control method by coordinating multiple control algorithms. We also propose an efficient coordination algorithm based on reinforcement learning. Finally, we evaluate the effectiveness of the proposed method through simulations.
Abstract:Automated anomaly detection is essential for managing information and communications technology (ICT) systems to maintain reliable services with minimum burden on operators. For detecting varying and continually emerging anomalies as differences from normal states, learning normal relationships inherent among cross-domain data monitored from ICT systems is essential. Deep-learning-based anomaly detection using an autoencoder (AE) is therefore promising for such complicated learning; however, its interpretation is still problematic. Since the dimensions of the input data contributing to the detected anomaly are not directly indicated in an AE, they are not suitable for localizing anomalies in large ICT systems composed of a huge amount of equipment. We propose an algorithm using sparse optimization for estimating contributing dimensions to anomalies detected with AEs. We also propose a multimodal AE (MAE) for effectively learning the relationships among cross-domain data, which can induce nonlinearity and differences in learnability among data types. We evaluated our algorithms with several datasets including real measured data in comparison with conventional algorithms and confirmed the superiority of our estimation algorithm in specifying contributing dimensions of anomalous data and our MAE in detecting anomalies in cross-domain data.
Abstract:Anomaly detection using dimensionality reduction has been an essential technique for monitoring multidimensional data. Although deep learning-based methods have been well studied for their remarkable detection performance, their interpretability is still a problem. In this paper, we propose a novel algorithm for estimating the dimensions contributing to the detected anomalies by using variational autoencoders (VAEs). Our algorithm is based on an approximative probabilistic model that considers the existence of anomalies in the data, and by maximizing the log-likelihood, we estimate which dimensions contribute to determining data as an anomaly. The experiments results with benchmark datasets show that our algorithm extracts the contributing dimensions more accurately than baseline methods.