Abstract:Reinforcement Learning from Human Feedback (RLHF) is widely used to align Language Models (LMs) with human preferences. However, existing approaches often neglect individual user preferences, leading to suboptimal personalization. We present the Preference Pretrained Transformer (PPT), a novel approach for adaptive personalization using online user feedback. PPT leverages the in-context learning capabilities of transformers to dynamically adapt to individual preferences. Our approach consists of two phases: (1) an offline phase where we train a single policy model using a history-dependent loss function, and (2) an online phase where the model adapts to user preferences through in-context learning. We demonstrate PPT's effectiveness in a contextual bandit setting, showing that it achieves personalized adaptation superior to existing methods while significantly reducing the computational costs. Our results suggest the potential of in-context learning for scalable and efficient personalization in large language models.
Abstract:RLHF has emerged as a pivotal step in aligning language models with human objectives and values. It typically involves learning a reward model from human preference data and then using reinforcement learning to update the generative model accordingly. Conversely, Direct Preference Optimization (DPO) directly optimizes the generative model with preference data, skipping reinforcement learning. However, both RLHF and DPO assume uniform preferences, overlooking the reality of diverse human annotators. This paper presents a new method to align generative models with varied human preferences. We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators. We then introduce a min-max regret ensemble learning model to produce a single generative method to minimize worst-case regret among annotator subgroups with similar latent factors. Our algorithms leverage the simplicity of DPO while accommodating diverse preferences. Experimental results validate the effectiveness of our approach in producing equitable generative policies.
Abstract:We study the problem of online sequential decision-making given auxiliary demonstrations from experts who made their decisions based on unobserved contextual information. These demonstrations can be viewed as solving related but slightly different tasks than what the learner faces. This setting arises in many application domains, such as self-driving cars, healthcare, and finance, where expert demonstrations are made using contextual information, which is not recorded in the data available to the learning agent. We model the problem as a zero-shot meta-reinforcement learning setting with an unknown task distribution and a Bayesian regret minimization objective, where the unobserved tasks are encoded as parameters with an unknown prior. We propose the Experts-as-Priors algorithm (ExPerior), a non-parametric empirical Bayes approach that utilizes the principle of maximum entropy to establish an informative prior over the learner's decision-making problem. This prior enables the application of any Bayesian approach for online decision-making, such as posterior sampling. We demonstrate that our strategy surpasses existing behaviour cloning and online algorithms for multi-armed bandits and reinforcement learning, showcasing the utility of our approach in leveraging expert demonstrations across different decision-making setups.