Abstract:Numerous techniques have been meticulously designed to achieve optimal architectures for convolutional neural networks (CNNs), yet a comparable focus on vision transformers (ViTs) has been somewhat lacking. Despite the remarkable success of ViTs in various vision tasks, their heavyweight nature presents challenges of computational costs. In this paper, we leverage the Gaussian process to systematically explore the nonlinear and uncertain relationship between performance and global architecture factors of MobileViT, such as resolution, width, and depth including the depth of in-verted residual blocks and the depth of ViT blocks, and joint factors including resolution-depth and resolution-width. We present design principles twisting magic 4D cube of the global architecture factors that minimize model sizes and computational costs with higher model accuracy. We introduce a formula for downsizing architectures by iteratively deriving smaller MobileViT V2, all while adhering to a specified constraint of multiply-accumulate operations (MACs). Experiment results show that our formula significantly outperforms CNNs and mobile ViTs across diversified datasets
Abstract:Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers. ESS operators can reap benefits from energy arbitrage by optimizing operations of storage equipment. To further enhance ESS flexibility within the energy market and improve renewable energy utilization, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed, which leverages the unique characteristics of battery energy storage (BES) and hydrogen energy storage (HES). For scheduling tasks of the heterogeneous PV-ESS, cost description plays a crucial role in guiding operator's strategies to maximize benefits. We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios. Moreover, while numerous methods excel in optimizing ESS energy arbitrage, they often rely on black-box models with opaque decision-making processes, limiting practical applicability. To overcome this limitation and enable transparent scheduling strategies, a prototype-based policy network with inherent interpretability is introduced. This network employs human-designed prototypes to guide decision-making by comparing similarities between prototypical situations and encountered situations, which allows for naturally explained scheduling strategies. Comparative results across four distinct cases underscore the effectiveness and practicality of our proposed pre-hoc interpretable optimization method when contrasted with black-box models.