Abstract:We present a computational model for a symbol emergence system that enables the emergence of lexical knowledge with combinatoriality among agents through a Metropolis-Hastings naming game and cross-situational learning. Many computational models have been proposed to investigate combinatoriality in emergent communication and symbol emergence in cognitive and developmental robotics. However, existing models do not sufficiently address category formation based on sensory-motor information and semiotic communication through the exchange of word sequences within a single integrated model. Our proposed model facilitates the emergence of lexical knowledge with combinatoriality by performing category formation using multimodal sensory-motor information and enabling semiotic communication through the exchange of word sequences among agents in a unified model. Furthermore, the model enables an agent to predict sensory-motor information for unobserved situations by combining words associated with categories in each modality. We conducted two experiments with two humanoid robots in a simulated environment to evaluate our proposed model. The results demonstrated that the agents can acquire lexical knowledge with combinatoriality through interpersonal cross-situational learning based on the Metropolis-Hastings naming game and cross-situational learning. Furthermore, our results indicate that the lexical knowledge developed using our proposed model exhibits generalization performance for novel situations through interpersonal cross-modal inference.
Abstract:In this study, we propose a head-to-head type (H2H-type) inter-personal multimodal Dirichlet mixture (Inter-MDM) by modifying the original Inter-MDM, which is a probabilistic generative model that represents the symbol emergence between two agents as multiagent multimodal categorization. A Metropolis--Hastings method-based naming game based on the Inter-MDM enables two agents to collaboratively perform multimodal categorization and share signs with a solid mathematical foundation of convergence. However, the conventional Inter-MDM presumes a tail-to-tail connection across a latent word variable, causing inflexibility of the further extension of Inter-MDM for modeling a more complex symbol emergence. Therefore, we propose herein a head-to-head type (H2H-type) Inter-MDM that treats a latent word variable as a child node of an internal variable of each agent in the same way as many prior studies of multimodal categorization. On the basis of the H2H-type Inter-MDM, we propose a naming game in the same way as the conventional Inter-MDM. The experimental results show that the H2H-type Inter-MDM yields almost the same performance as the conventional Inter-MDM from the viewpoint of multimodal categorization and sign sharing.
Abstract:This paper describes a computational model of multiagent multimodal categorization that realizes emergent communication. We clarify whether the computational model can reproduce the following functions in a symbol emergence system, comprising two agents with different sensory modalities playing a naming game. (1) Function for forming a shared lexical system that comprises perceptual categories and corresponding signs, formed by agents through individual learning and semiotic communication between agents. (2) Function to improve the categorization accuracy in an agent via semiotic communication with another agent, even when some sensory modalities of each agent are missing. (3) Function that an agent infers unobserved sensory information based on a sign sampled from another agent in the same manner as cross-modal inference. We propose an interpersonal multimodal Dirichlet mixture (Inter-MDM), which is derived by dividing an integrative probabilistic generative model, which is obtained by integrating two Dirichlet mixtures (DMs). The Markov chain Monte Carlo algorithm realizes emergent communication. The experimental results demonstrated that Inter-MDM enables agents to form multimodal categories and appropriately share signs between agents. It is shown that emergent communication improves categorization accuracy, even when some sensory modalities are missing. Inter-MDM enables an agent to predict unobserved information based on a shared sign.