Abstract:Embodied agents, such as robots, will need to interact in situated environments where successful communication often depends on reasoning over social norms: shared expectations that constrain what actions are appropriate in context. A key capability in such settings is norm-based reference resolution (NBRR), where interpreting referential expressions requires inferring implicit normative expectations grounded in physical and social context. Yet it remains unclear whether Large Language Models (LLMs) can support this kind of reasoning. In this work, we introduce SNIC (Situated Norms in Context), a human-validated diagnostic testbed designed to probe how well state-of-the-art LLMs can extract and utilize normative principles relevant to NBRR. SNIC emphasizes physically grounded norms that arise in everyday tasks such as cleaning, tidying, and serving. Across a range of controlled evaluations, we find that even the strongest LLMs struggle to consistently identify and apply social norms, particularly when norms are implicit, underspecified, or in conflict. These findings reveal a blind spot in current LLMs and highlight a key challenge for deploying language-based systems in socially situated, embodied settings.
Abstract:We present IntelliProof, an interactive system for analyzing argumentative essays through LLMs. IntelliProof structures an essay as an argumentation graph, where claims are represented as nodes, supporting evidence is attached as node properties, and edges encode supporting or attacking relations. Unlike existing automated essay scoring systems, IntelliProof emphasizes the user experience: each relation is initially classified and scored by an LLM, then visualized for enhanced understanding. The system provides justifications for classifications and produces quantitative measures for essay coherence. It enables rapid exploration of argumentative quality while retaining human oversight. In addition, IntelliProof provides a set of tools for a better understanding of an argumentative essay and its corresponding graph in natural language, bridging the gap between the structural semantics of argumentative essays and the user's understanding of a given text. A live demo and the system are available here to try: \textbf{https://intelliproof.vercel.app}




Abstract:Large Language Models (LLMs), despite achieving state-of-the-art results in a number of evaluation tasks, struggle to maintain their performance when logical reasoning is strictly required to correctly infer a prediction. In this work, we propose Argument Generation as a method of forcing models to utilize their reasoning capabilities when other approaches such as chain-of-thought reasoning prove insufficient. Our method involves the generation of arguments for each possible inference result, and asking the end model to rank the generated arguments. We show that Argument Generation can serve as an appropriate substitute for zero-shot prompting techniques without the requirement to add layers of complexity. Furthermore, we argue that knowledge-probing techniques such as chain-of-thought reasoning and Argument Generation are only useful when further reasoning is required to infer a prediction, making them auxiliary to more common zero-shot approaches. Finally, we demonstrate that our approach forces larger gains in smaller language models, showcasing a complex relationship between model size and prompting methods in foundation models.




Abstract:Numerous debiasing techniques have been proposed to mitigate the gender bias that is prevalent in pretrained language models. These are often evaluated on datasets that check the extent to which the model is gender-neutral in its predictions. Importantly, this evaluation protocol overlooks the possible adverse impact of bias mitigation on useful gender knowledge. To fill this gap, we propose DiFair, a manually curated dataset based on masked language modeling objectives. DiFair allows us to introduce a unified metric, gender invariance score, that not only quantifies a model's biased behavior, but also checks if useful gender knowledge is preserved. We use DiFair as a benchmark for a number of widely-used pretained language models and debiasing techniques. Experimental results corroborate previous findings on the existing gender biases, while also demonstrating that although debiasing techniques ameliorate the issue of gender bias, this improvement usually comes at the price of lowering useful gender knowledge of the model.