Abstract:Model merging, a method that combines the parameters and embeddings of multiple fine-tuned large language models (LLMs), offers a promising approach to enhance model performance across various tasks while maintaining computational efficiency. This paper introduces Activation-Informed Merging (AIM), a technique that integrates the information from the activation space of LLMs into the merging process to improve performance and robustness. AIM is designed as a flexible, complementary solution that is applicable to any existing merging method. It aims to preserve critical weights from the base model, drawing on principles from continual learning~(CL) and model compression. Utilizing a task-agnostic calibration set, AIM selectively prioritizes essential weights during merging. We empirically demonstrate that AIM significantly enhances the performance of merged models across multiple benchmarks. Our findings suggest that considering the activation-space information can provide substantial advancements in the model merging strategies for LLMs with up to 40\% increase in benchmark performance.
Abstract:Existing differentially private (DP) synthetic data generation mechanisms typically assume a single-source table. In practice, data is often distributed across multiple tables with relationships across tables. In this paper, we introduce the first-of-its-kind algorithm that can be combined with any existing DP mechanisms to generate synthetic relational databases. Our algorithm iteratively refines the relationship between individual synthetic tables to minimize their approximation errors in terms of low-order marginal distributions while maintaining referential integrity. Finally, we provide both DP and theoretical utility guarantees for our algorithm.