Abstract:Neural operators extend data-driven models to map between infinite-dimensional functional spaces. While these operators perform effectively in either the time or frequency domain, their performance may be limited when applied to non-stationary spatial or temporal signals whose frequency characteristics change with time. Here, we introduce Complex Neural Operator (CoNO) that parameterizes the integral kernel using Fractional Fourier Transform (FrFT), better representing non-stationary signals in a complex-valued domain. Theoretically, we prove the universal approximation capability of CoNO. We perform an extensive empirical evaluation of CoNO on seven challenging partial differential equations (PDEs), including regular grids, structured meshes, and point clouds. Empirically, CoNO consistently attains state-of-the-art performance, showcasing an average relative gain of 10.9%. Further, CoNO exhibits superior performance, outperforming all other models in additional tasks such as zero-shot super-resolution and robustness to noise. CoNO also exhibits the ability to learn from small amounts of data -- giving the same performance as the next best model with just 60% of the training data. Altogether, CoNO presents a robust and superior model for modeling continuous dynamical systems, providing a fillip to scientific machine learning.
Abstract:Neural operators extend data-driven models to map between infinite-dimensional functional spaces. These models have successfully solved continuous dynamical systems represented by differential equations, viz weather forecasting, fluid flow, or solid mechanics. However, the existing operators still rely on real space, thereby losing rich representations potentially captured in the complex space by functional transforms. In this paper, we introduce a Complex Neural Operator (CoNO), that parameterizes the integral kernel in the complex fractional Fourier domain. Additionally, the model employing a complex-valued neural network along with aliasing-free activation functions preserves the complex values and complex algebraic properties, thereby enabling improved representation, robustness to noise, and generalization. We show that the model effectively captures the underlying partial differential equation with a single complex fractional Fourier transform. We perform an extensive empirical evaluation of CoNO on several datasets and additional tasks such as zero-shot super-resolution, evaluation of out-of-distribution data, data efficiency, and robustness to noise. CoNO exhibits comparable or superior performance to all the state-of-the-art models in these tasks. Altogether, CoNO presents a robust and superior model for modeling continuous dynamical systems, providing a fillip to scientific machine learning.
Abstract:Continuous dynamical systems, characterized by differential equations, are ubiquitously used to model several important problems: plasma dynamics, flow through porous media, weather forecasting, and epidemic dynamics. Recently, a wide range of data-driven models has been used successfully to model these systems. However, in contrast to established fields like computer vision, limited studies are available analyzing the strengths and potential applications of different classes of these models that could steer decision-making in scientific machine learning. Here, we introduce CodBench, an exhaustive benchmarking suite comprising 11 state-of-the-art data-driven models for solving differential equations. Specifically, we comprehensively evaluate 4 distinct categories of models, viz., feed forward neural networks, deep operator regression models, frequency-based neural operators, and transformer architectures against 8 widely applicable benchmark datasets encompassing challenges from fluid and solid mechanics. We conduct extensive experiments, assessing the operators' capabilities in learning, zero-shot super-resolution, data efficiency, robustness to noise, and computational efficiency. Interestingly, our findings highlight that current operators struggle with the newer mechanics datasets, motivating the need for more robust neural operators. All the datasets and codes will be shared in an easy-to-use fashion for the scientific community. We hope this resource will be an impetus for accelerated progress and exploration in modeling dynamical systems.