Abstract:Does Donald Trump speak differently from other presidents? If so, in what ways? Are these differences confined to any single medium of communication? To investigate these questions, this paper introduces a novel metric of uniqueness based on large language models, develops a new lexicon for divisive speech, and presents a framework for comparing the lexical features of political opponents. Applying these tools to a variety of corpora of presidential speeches, we find considerable evidence that Trump's speech patterns diverge from those of all major party nominees for the presidency in recent history. Some notable findings include Trump's employment of particularly divisive and antagonistic language targeting of his political opponents and his patterns of repetition for emphasis. Furthermore, Trump is significantly more distinctive than his fellow Republicans, whose uniqueness values are comparably closer to those of the Democrats. These differences hold across a variety of measurement strategies, arise on both the campaign trail and in official presidential addresses, and do not appear to be an artifact of secular time trends.
Abstract:Growing literature has shown that powerful NLP systems may encode social biases; however, the political bias of summarization models remains relatively unknown. In this work, we use an entity replacement method to investigate the portrayal of politicians in automatically generated summaries of news articles. We develop a computational framework based on political entities and lexical resources, and use it to assess biases about Donald Trump and Joe Biden in both extractive and abstractive summarization models. We find consistent differences, such as stronger associations of a collective US government (i.e., administration) with Biden than with Trump. These summary dissimilarities are most prominent when the entity is heavily featured in the source article. Our systematic characterization provides a framework for future studies of bias in summarization.