Abstract:This paper presents an incremental replanning algorithm, dubbed LTL-D*, for temporal-logic-based task planning in a dynamically changing environment. Unexpected changes in the environment may lead to failures in satisfying a task specification in the form of a Linear Temporal Logic (LTL). In this study, the considered failures are categorized into two classes: (i) the desired LTL specification can be satisfied via replanning, and (ii) the desired LTL specification is infeasible to meet strictly and can only be satisfied in a "relaxed" fashion. To address these failures, the proposed algorithm finds an optimal replanning solution that minimally violates desired task specifications. In particular, our approach leverages the D* Lite algorithm and employs a distance metric within the synthesized automaton to quantify the degree of the task violation and then replan incrementally. This ensures plan optimality and reduces planning time, especially when frequent replanning is required. Our approach is implemented in a robot navigation simulation to demonstrate a significant improvement in the computational efficiency for replanning by two orders of magnitude.
Abstract:We investigate the real-time estimation of human situation awareness using observations from a robot teammate with limited visibility. In human factors and human-autonomy teaming, it is recognized that individuals navigate their environments using an internal mental simulation, or mental model. The mental model informs cognitive processes including situation awareness, contextual reasoning, and task planning. In teaming domains, the mental model includes a team model of each teammate's beliefs and capabilities, enabling fluent teamwork without the need for explicit communication. However, little work has applied team models to human-robot teaming. We compare the performance of two current methods at estimating user situation awareness over varying visibility conditions. Our results indicate that the methods are largely resilient to low-visibility conditions in our domain, however opportunities exist to improve their overall performance.
Abstract:A significant challenge to measuring human-automation trust is the amount of construct proliferation, models, and questionnaires with highly variable validation. However, all agree that trust is a crucial element of technological acceptance, continued usage, fluency, and teamwork. Herein, we synthesize a consensus model for trust in human-automation interaction by performing a meta-analysis of validated and reliable trust survey instruments. To accomplish this objective, this work identifies the most frequently cited and best-validated human-automation and human-robot trust questionnaires, as well as the most well-established factors, which form the dimensions and antecedents of such trust. To reduce both confusion and construct proliferation, we provide a detailed mapping of terminology between questionnaires. Furthermore, we perform a meta-analysis of the regression models that emerged from those experiments which used multi-factorial survey instruments. Based on this meta-analysis, we demonstrate a convergent experimentally validated model of human-automation trust. This convergent model establishes an integrated framework for future research. It identifies the current boundaries of trust measurement and where further investigation is necessary. We close by discussing choosing and designing an appropriate trust survey instrument. By comparing, mapping, and analyzing well-constructed trust survey instruments, a consensus structure of trust in human-automation interaction is identified. Doing so discloses a more complete basis for measuring trust emerges that is widely applicable. It integrates the academic idea of trust with the colloquial, common-sense one. Given the increasingly recognized importance of trust, especially in human-automation interaction, this work leaves us better positioned to understand and measure it.
Abstract:Human-robot interaction and game theory have developed distinct theories of trust for over three decades in relative isolation from one another. Human-robot interaction has focused on the underlying dimensions, layers, correlates, and antecedents of trust models, while game theory has concentrated on the psychology and strategies behind singular trust decisions. Both fields have grappled to understand over-trust and trust calibration, as well as how to measure trust expectations, risk, and vulnerability. This paper presents initial steps in closing the gap between these fields. Using insights and experimental findings from interdependence theory and social psychology, this work starts by analyzing a large game theory competition data set to demonstrate that the strongest predictors for a wide variety of human-human trust interactions are the interdependence-derived variables for commitment and trust that we have developed. It then presents a second study with human subject results for more realistic trust scenarios, involving both human-human and human-machine trust. In both the competition data and our experimental data, we demonstrate that the interdependence metrics better capture social `overtrust' than either rational or normative psychological reasoning, as proposed by game theory. This work further explores how interdependence theory--with its focus on commitment, coercion, and cooperation--addresses many of the proposed underlying constructs and antecedents within human-robot trust, shedding new light on key similarities and differences that arise when robots replace humans in trust interactions.