Abstract:End-to-end image and video codecs are becoming increasingly competitive, compared to traditional compression techniques that have been developed through decades of manual engineering efforts. These trainable codecs have many advantages over traditional techniques, such as their straightforward adaptation to perceptual distortion metrics and high performance in specific fields thanks to their learning ability. However, current state-of-the-art neural codecs do not fully exploit the benefits of vector quantization and the existence of the entropy gradient in decoding devices. In this paper, we propose to leverage these two properties (vector quantization and entropy gradient) to improve the performance of off-the-shelf codecs. Firstly, we demonstrate that using non-uniform scalar quantization cannot improve performance over uniform quantization. We thus suggest using predefined optimal uniform vector quantization to improve performance. Secondly, we show that the entropy gradient, available at the decoder, is correlated with the reconstruction error gradient, which is not available at the decoder. We therefore use the former as a proxy to enhance compression performance. Our experimental results show that these approaches save between 1 to 3% of the rate for the same quality across various pretrained methods. In addition, the entropy gradient based solution improves traditional codec performance significantly as well.
Abstract:A quantitative analysis of post-VVC luma and chroma intra tools is presented, focusing on their statistical behaviors, in terms of block selection rate under different conditions. The aim is to provide insights to the standardization community, offering a clearer understanding of interactions between tools and assisting in the design of an optimal combination of these novel tools when the JVET enters the standardization phase. Specifically, this paper examines the selection rate of intra tools as function of 1) the version of the ECM, 2) video resolution, and 3) video bitrate. Additionally, tests have been conducted on sequences beyond the JVET CTC database. The statistics show several trends and interactions, with various strength, between coding tools of both luma and chroma.
Abstract:End-to-end image/video codecs are getting competitive compared to traditional compression techniques that have been developed through decades of manual engineering efforts. These trainable codecs have many advantages over traditional techniques such as easy adaptation on perceptual distortion metrics and high performance on specific domains thanks to their learning ability. However, state of the art neural codecs does not take advantage of the existence of gradient of entropy in decoding device. In this paper, we theoretically show that gradient of entropy (available at decoder side) is correlated with the gradient of the reconstruction error (which is not available at decoder side). We then demonstrate experimentally that this gradient can be used on various compression methods, leading to a $1-2\%$ rate savings for the same quality. Our method is orthogonal to other improvements and brings independent rate savings.