Abstract:In conventional studies on environmental sound separation and synthesis using captions, datasets consisting of multiple-source sounds with their captions were used for model training. However, when we collect the captions for multiple-source sound, it is not easy to collect detailed captions for each sound source, such as the number of sound occurrences and timbre. Therefore, it is difficult to extract only the single-source target sound by the model-training method using a conventional captioned sound dataset. In this work, we constructed a dataset with captions for a single-source sound named CAPTDURE, which can be used in various tasks such as environmental sound separation and synthesis. Our dataset consists of 1,044 sounds and 4,902 captions. We evaluated the performance of environmental sound extraction using our dataset. The experimental results show that the captions for single-source sounds are effective in extracting only the single-source target sound from the mixture sound.
Abstract:This paper proposes an unsupervised anomalous sound detection method using sound separation. In factory environments, background noise and non-objective sounds obscure desired machine sounds, making it challenging to detect anomalous sounds. Therefore, using sounds not mixed with background noise or non-purpose sounds in the detection system is desirable. We compared two versions of our proposed method, one using sound separation as a pre-processing step and the other using separation-based outlier exposure that uses the error between two separated sounds. Based on the assumption that differences in separation performance between normal and anomalous sounds affect detection results, a sound separation model specific to a particular product type was used in both versions. Experimental results indicate that the proposed method improved anomalous sound detection performance for all Machine IDs, achieving a maximum improvement of 39%.