Abstract:We introduce TableLLM, a robust large language model (LLM) with 13 billion parameters, purpose-built for proficiently handling tabular data manipulation tasks, whether they are embedded within documents or spreadsheets, catering to real-world office scenarios. We propose a distant supervision method for training, which comprises a reasoning process extension strategy, aiding in training LLMs to understand reasoning patterns more effectively as well as a cross-way validation strategy, ensuring the quality of the automatically generated data. To evaluate the performance of TableLLM, we have crafted a benchmark tailored to address both document and spreadsheet formats as well as constructed a well-organized evaluation pipeline capable of handling both scenarios. Thorough evaluations underscore the advantages of TableLLM when compared to various existing general-purpose and tabular data-focused LLMs. We have publicly released the model checkpoint, source code, benchmarks, and a web application for user interaction.Our codes and data are publicly available at https://github.com/TableLLM/TableLLM.
Abstract:In the crucial stages of the Robomaster Youth Championship, the Robomaster EP Robot must operate exclusively on autonomous algorithms to remain competitive. Target recognition and automatic assisted aiming are indispensable for the EP robot. In this study, we use YOLOv5 for multi-object detection to identify the Robomaster EP Robot and its armor. Additionally, we integrate the DeepSORT algorithm for vehicle identification and tracking. As a result, we introduce a refined YOLOv5-based system that allows the robot to recognize and aim at multiple targets simultaneously. To ensure precise tracking, we use a PID controller with Feedforward Enhancement and an FIR controller paired with a Kalman filter. This setup enables quick gimbal movement towards the target and predicts its next position, optimizing potential damage during motion. Our proposed system enhances the robot's accuracy in targeting armor, improving its competitive performance.