Abstract:Poor sleep health is an increasingly concerning public healthcare crisis, especially when coupled with a dwindling number of health professionals qualified to combat it. However, there is a growing body of scientific literature on the use of digital technologies in supporting and sustaining individuals' healthy sleep habits. Social robots are a relatively recent technology that has been used to facilitate health care interventions and may have potential in improving sleep health outcomes, as well. Social robots' unique characteristics -- such as anthropomorphic physical embodiment or effective communication methods -- help to engage users and motivate them to comply with specific interventions, thus improving the interventions' outcomes. This scoping review aims to evaluate current scientific evidence for employing social robots in sleep health interventions, identify critical research gaps, and suggest future directions for developing and using social robots to improve people's sleep health. Our analysis of the reviewed studies found them limited due to a singular focus on the older adult population, use of small sample sizes, limited intervention durations, and other compounding factors. Nevertheless, the reviewed studies reported several positive outcomes, highlighting the potential social robots hold in this field. Although our review found limited clinical evidence for the efficacy of social robots as purveyors of sleep health interventions, it did elucidate the potential for a successful future in this domain if current limitations are addressed and more research is conducted.
Abstract:This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.