Abstract:Recent advances in metasurface lenses (metalenses) have shown great potential for opening a new era in compact imaging, photography, light detection and ranging (LiDAR), and virtual reality/augmented reality (VR/AR) applications. However, the fundamental trade-off between broadband focusing efficiency and operating bandwidth limits the performance of broadband metalenses, resulting in chromatic aberration, angular aberration, and a relatively low efficiency. In this study, a deep-learning-based image restoration framework is proposed to overcome these limitations and realize end-to-end metalens imaging, thereby achieving aberration-free full-color imaging for massproduced metalenses with 10-mm diameter. Neural network-assisted metalens imaging achieved a high resolution comparable to that of the ground truth image.
Abstract:Structured light has proven instrumental in 3D imaging, LiDAR, and holographic light projection. Metasurfaces, comprised of sub-wavelength-sized nanostructures, facilitate 180$^\circ$ field-of-view (FoV) structured light, circumventing the restricted FoV inherent in traditional optics like diffractive optical elements. However, extant metasurface-facilitated structured light exhibits sub-optimal performance in downstream tasks, due to heuristic pattern designs such as periodic dots that do not consider the objectives of the end application. In this paper, we present neural 360$^\circ$ structured light, driven by learned metasurfaces. We propose a differentiable framework, that encompasses a computationally-efficient 180$^\circ$ wave propagation model and a task-specific reconstructor, and exploits both transmission and reflection channels of the metasurface. Leveraging a first-order optimizer within our differentiable framework, we optimize the metasurface design, thereby realizing neural 360$^\circ$ structured light. We have utilized neural 360$^\circ$ structured light for holographic light projection and 3D imaging. Specifically, we demonstrate the first 360$^\circ$ light projection of complex patterns, enabled by our propagation model that can be computationally evaluated 50,000$\times$ faster than the Rayleigh-Sommerfeld propagation. For 3D imaging, we improve depth-estimation accuracy by 5.09$\times$ in RMSE compared to the heuristically-designed structured light. Neural 360$^\circ$ structured light promises robust 360$^\circ$ imaging and display for robotics, extended-reality systems, and human-computer interactions.
Abstract:By learning the optimal policy with a double deep Q-learning network, we design ultra-broadband, biomimetic, perfect absorbers with various materials, based the structure of a moths eye. All absorbers achieve over 90% average absorption from 400 to 1,600 nm. By training a DDQN with motheye structures made up of chromium, we transfer the learned knowledge to other, similar materials to quickly and efficiently find the optimal parameters from the around 1 billion possible options. The knowledge learned from previous optimisations helps the network to find the best solution for a new material in fewer steps, dramatically increasing the efficiency of finding designs with ultra-broadband absorption.
Abstract:Data-driven design approaches based on deep-learning have been introduced in nanophotonics to reduce time-consuming iterative simulations which have been a major challenge. Here, we report the first use of conditional deep convolutional generative adversarial networks to design nanophotonic antennae that are not constrained to a predefined shape. For given input reflection spectra, the network generates desirable designs in the form of images; this form allows suggestions of new structures that cannot be represented by structural parameters. Simulation results obtained from the generated designs agreed well with the input reflection spectrum. This method opens new avenues towards the development of nanophotonics by providing a fast and convenient approach to design complex nanophotonic structures that have desired optical properties.
Abstract:Recently, a novel machine learning model has emerged in the field of reinforcement learning known as deep Q-learning. This model is capable of finding the best possible solution in systems consisting of millions of choices, without ever experiencing it before, and has been used to beat the best human minds at complex games such as, Go and chess, which both have a huge number of possible decisions and outcomes for each move. With a human-level intelligence, it has been solved the problems that no other machine learning model could do before. Here, we show the steps needed for implementing this model on an optical problem. We investigated the colour generation by dielectric nanostructures and show that this model can find geometrical properties that can generate a much deeper red, green and blue colours compared to the ones found by human researchers. This technique can easily be extended to predict and find the best design parameters for other optical structures.
Abstract:Deep learning can be used to extract meaningful results from images. In this paper, we used convolutional neural networks combined with recurrent neural networks on images of plasmonic structures and extract absorption data form them. To provide the required data for the model we did 100,000 simulations with similar setups and random structures. By designing a deep network we could find a model that could predict the absorption of any structure with similar setup. We used convolutional neural networks to get the spatial information from the images and we used recurrent neural networks to help the model find the relationship between the spatial information obtained from convolutional neural network model. With this design we could reach a very low loss in predicting the absorption compared to the results obtained from numerical simulation in a very short time.