Abstract:Coral reef ecosystems provide essential ecosystem services, but face significant threats from climate change and human activities. Although advances in deep learning have enabled automatic classification of coral reef conditions, conventional deep models struggle to achieve high performance when processing complex underwater ecological images. Vision foundation models, known for their high accuracy and cross-domain generalizability, offer promising solutions. However, fine-tuning these models requires substantial computational resources and results in high carbon emissions. To address these challenges, adapter learning methods such as Low-Rank Adaptation (LoRA) have emerged as a solution. This study introduces an approach integrating the DINOv2 vision foundation model with the LoRA fine-tuning method. The approach leverages multi-temporal field images collected through underwater surveys at 15 dive sites at Koh Tao, Thailand, with all images labeled according to universal standards used in citizen science-based conservation programs. The experimental results demonstrate that the DINOv2-LoRA model achieved superior accuracy, with a match ratio of 64.77%, compared to 60.34% achieved by the best conventional model. Furthermore, incorporating LoRA reduced the trainable parameters from 1,100M to 5.91M. Transfer learning experiments conducted under different temporal and spatial settings highlight the exceptional generalizability of DINOv2-LoRA across different seasons and sites. This study is the first to explore the efficient adaptation of foundation models for multi-label classification of coral reef conditions under multi-temporal and multi-spatial settings. The proposed method advances the classification of coral reef conditions and provides a tool for monitoring, conserving, and managing coral reef ecosystems.
Abstract:Since coral reef ecosystems face threats from human activities and climate change, coral conservation programs are implemented worldwide. Monitoring coral health provides references for guiding conservation activities. However, current labor-intensive methods result in a backlog of unsorted images, highlighting the need for automated classification. Few studies have simultaneously utilized accurate annotations along with updated algorithms and datasets. This study aimed to create a dataset representing common coral conditions and associated stressors in the Indo-Pacific. Concurrently, it assessed existing classification algorithms and proposed a new multi-label method for automatically detecting coral conditions and extracting ecological information. A dataset containing over 20,000 high-resolution coral images of different health conditions and stressors was constructed based on the field survey. Seven representative deep learning architectures were tested on this dataset, and their performance was quantitatively evaluated using the F1 metric and the match ratio. Based on this evaluation, a new method utilizing the ensemble learning approach was proposed. The proposed method accurately classified coral conditions as healthy, compromised, dead, and rubble; it also identified corresponding stressors, including competition, disease, predation, and physical issues. This method can help develop the coral image archive, guide conservation activities, and provide references for decision-making for reef managers and conservationists. The proposed ensemble learning approach outperforms others on the dataset, showing State-Of-The-Art (SOTA) performance. Future research should improve its generalizability and accuracy to support global coral conservation efforts.