Abstract:There has been significant recent work on the theory and application of randomized coordinate descent algorithms, beginning with the work of Nesterov [SIAM J. Optim., 22(2), 2012], who showed that a random-coordinate selection rule achieves the same convergence rate as the Gauss-Southwell selection rule. This result suggests that we should never use the Gauss-Southwell rule, as it is typically much more expensive than random selection. However, the empirical behaviours of these algorithms contradict this theoretical result: in applications where the computational costs of the selection rules are comparable, the Gauss-Southwell selection rule tends to perform substantially better than random coordinate selection. We give a simple analysis of the Gauss-Southwell rule showing that---except in extreme cases---its convergence rate is faster than choosing random coordinates. Further, in this work we (i) show that exact coordinate optimization improves the convergence rate for certain sparse problems, (ii) propose a Gauss-Southwell-Lipschitz rule that gives an even faster convergence rate given knowledge of the Lipschitz constants of the partial derivatives, (iii) analyze the effect of approximate Gauss-Southwell rules, and (iv) analyze proximal-gradient variants of the Gauss-Southwell rule.
Abstract:In 1963, Polyak proposed a simple condition that is sufficient to show a global linear convergence rate for gradient descent. This condition is a special case of the \L{}ojasiewicz inequality proposed in the same year, and it does not require strong convexity (or even convexity). In this work, we show that this much-older Polyak-\L{}ojasiewicz (PL) inequality is actually weaker than the main conditions that have been explored to show linear convergence rates without strong convexity over the last 25 years. We also use the PL inequality to give new analyses of randomized and greedy coordinate descent methods, sign-based gradient descent methods, and stochastic gradient methods in the classic setting (with decreasing or constant step-sizes) as well as the variance-reduced setting. We further propose a generalization that applies to proximal-gradient methods for non-smooth optimization, leading to simple proofs of linear convergence of these methods. Along the way, we give simple convergence results for a wide variety of problems in machine learning: least squares, logistic regression, boosting, resilient backpropagation, L1-regularization, support vector machines, stochastic dual coordinate ascent, and stochastic variance-reduced gradient methods.