Abstract:Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.
Abstract:Recent studies have shown that deep neural networks (DNNs) perform significantly better than shallow networks and Gaussian mixture models (GMMs) on large vocabulary speech recognition tasks. In this paper, we argue that the improved accuracy achieved by the DNNs is the result of their ability to extract discriminative internal representations that are robust to the many sources of variability in speech signals. We show that these representations become increasingly insensitive to small perturbations in the input with increasing network depth, which leads to better speech recognition performance with deeper networks. We also show that DNNs cannot extrapolate to test samples that are substantially different from the training examples. If the training data are sufficiently representative, however, internal features learned by the DNN are relatively stable with respect to speaker differences, bandwidth differences, and environment distortion. This enables DNN-based recognizers to perform as well or better than state-of-the-art systems based on GMMs or shallow networks without the need for explicit model adaptation or feature normalization.