Abstract:Most people struggle with prioritizing work. While inexact heuristics have been developed over time, there is still no tractable principled algorithm for deciding which of the many possible tasks one should tackle in any given day, month, week, or year. Additionally, some people suffer from cognitive biases such as the present bias, leading to prioritization of their immediate experience over long-term consequences which manifests itself as procrastination and inefficient task prioritization. Our method utilizes optimal gamification to help people overcome these problems by incentivizing each task by a number of points that convey how valuable it is in the long-run. We extend the previous version of our optimal gamification method with added services for helping people decide which tasks should and should not be done when there is not enough time to do everything. To improve the efficiency and scalability of the to-do list solver, we designed a hierarchical procedure that tackles the problem from the top-level goals to fine-grained tasks. We test the accuracy of the incentivised to-do list by comparing the performance of the strategy with the points computed exactly using Value Iteration for a variety of case studies. These case studies were specifically designed to cover the corner cases to get an accurate judge of performance. Our method yielded the same performance as the exact method for all case studies. To demonstrate its functionality, we released an API that makes it easy to deploy our method in Web and app services. We assessed the scalability of our method by applying it to to-do lists with increasingly larger numbers of goals, sub-goals per goal, hierarchically nested levels of subgoals. We found that the method provided through our API is able to tackle fairly large to-do lists having a 576 tasks. This indicates that our method is suitable for real-world applications.
Abstract:To make good decisions in the real world people need efficient planning strategies because their computational resources are limited. Knowing which planning strategies would work best for people in different situations would be very useful for understanding and improving human decision-making. But our ability to compute those strategies used to be limited to very small and very simple planning tasks. To overcome this computational bottleneck, we introduce a cognitively-inspired reinforcement learning method that can overcome this limitation by exploiting the hierarchical structure of human behavior. The basic idea is to decompose sequential decision problems into two sub-problems: setting a goal and planning how to achieve it. This hierarchical decomposition enables us to discover optimal strategies for human planning in larger and more complex tasks than was previously possible. The discovered strategies outperform existing planning algorithms and achieve a super-human level of computational efficiency. We demonstrate that teaching people to use those strategies significantly improves their performance in sequential decision-making tasks that require planning up to eight steps ahead. By contrast, none of the previous approaches was able to improve human performance on these problems. These findings suggest that our cognitively-informed approach makes it possible to leverage reinforcement learning to improve human decision-making in complex sequential decision-problems. Future work can leverage our method to develop decision support systems that improve human decision making in the real world.
Abstract:What should I work on first? What can wait until later? Which projects should I prioritize and which tasks are not worth my time? These are challenging questions that many people face every day. People's intuitive strategy is to prioritize their immediate experience over the long-term consequences. This leads to procrastination and the neglect of important long-term projects in favor of seemingly urgent tasks that are less important. Optimal gamification strives to help people overcome these problems by incentivizing each task by a number of points that communicates how valuable it is in the long-run. Unfortunately, computing the optimal number of points with standard dynamic programming methods quickly becomes intractable as the number of a person's projects and the number of tasks required by each project increase. Here, we introduce and evaluate a scalable method for identifying which tasks are most important in the long run and incentivizing each task according to its long-term value. Our method makes it possible to create to-do list gamification apps that can handle the size and complexity of people's to-do lists in the real world.