Abstract:Model-Free Reinforcement Learning (RL) algorithms either learn how to map states to expected rewards or search for policies that can maximize a certain performance function. Model-Based algorithms instead, aim to learn an approximation of the underlying model of the RL environment and then use it in combination with planning algorithms. Upside-Down Reinforcement Learning (UDRL) is a novel learning paradigm that aims to learn how to predict actions from states and desired commands. This task is formulated as a Supervised Learning problem and has successfully been tackled by Neural Networks (NNs). In this paper, we investigate whether function approximation algorithms other than NNs can also be used within a UDRL framework. Our experiments, performed over several popular optimal control benchmarks, show that tree-based methods like Random Forests and Extremely Randomized Trees can perform just as well as NNs with the significant benefit of resulting in policies that are inherently more interpretable than NNs, therefore paving the way for more transparent, safe, and robust RL.
Abstract:In this proof-of-concept study, we conduct multivariate timeseries forecasting for the concentrations of nitrogen dioxide (NO2), ozone (O3), and (fine) particulate matter (PM10 & PM2.5) with meteorological covariates between two locations using various deep learning models, with a focus on long short-term memory (LSTM) and gated recurrent unit (GRU) architectures. In particular, we propose an integrated, hierarchical model architecture inspired by air pollution dynamics and atmospheric science that employs multi-task learning and is benchmarked by unidirectional and fully-connected models. Results demonstrate that, above all, the hierarchical GRU proves itself as a competitive and efficient method for forecasting the concentration of smog-related pollutants.