Abstract:Large Language Models (LLMs) have shown exceptional performance across various Data-to-Text Generation (DTG) tasks. However, generating factually consistent text in DTG remains challenging for LLMs. Despite this, in-depth evaluations of LLM factual consistency for DTG remain missing in the current literature. This paper addresses this gap by providing an extensive evaluation of factual consistency in LLMs for DTG. Our evaluation covers five widely used DTG datasets (E2E, ViGGo, WikiTableText, DART, and WebNLG) and five prominent LLM families (T5, BART, OPT, BLOOM, and Llama 2). To ensure a thorough evaluation of factual consistency, we use four state-of-the-art automatic metrics and include essential human assessments. Our extensive evaluations reveals three key findings regarding factual consistency in LLMs for DTG. First, Llama 2 often excels in generating factually consistent text, although smaller models like T5 and BART can achieve strong factual consistency on larger, lexically less-diverse datasets. Second, the average rate of change (AROC) indicates that increasing model size (number of model trainable parameters) generally enhances factual consistency of LLMs in DTG. Third, we observe that source-reference divergence (i.e., when the reference text diverges semantically from the source) typically reduces the factual consistency of LLMs in DTG.
Abstract:Data-to-text (D2T) generation aims to generate human-readable text from semi-structured data, such as tables and graphs. The recent success of D2T is largely attributed to advancements in LLMs. Despite the success of LLMs, no research has been conducted to illustrate the impact of model size on the performance of fine-tuned LLMs for D2T tasks. D2T model performance is typically assessed based on three key qualities: \textit{readability} (indicates fluency and coherence), \textit{informativeness} (measures content similarity), and \textit{faithfulness} (assesses consistency of factual information). It is currently uncertain whether increasing the size of LLMs effectively improves performance in D2T tasks across these three qualities. The objective of this study is to investigate the performance of fine-tuned LLMs in D2T tasks in terms of model size. Through extensive comparative analysis, we aim to elucidate both the advantages and limitations of scaling model sizes across five widely used D2T datasets (E2E, ViGGo, WikiTableText, DART, and WebNLG) and twelve state-of-the-art LLMs with varying sizes from five different LLM families (T5, BART, OPT, BLOOM, and Llama 2). To comprehensively cover all the three essential qualities of D2T models, we incorporate six widely recognized automatic metrics -- \textsc{BLEU}, \textsc{METEOR}, \textsc{BERTScore}, \textsc{MoverScore}, \textsc{Parent}, and \textsc{BARTScore}. We also provide an in-depth analysis of LLM performance concerning model size in the presence of source-reference divergence, a critical aspect of D2T tasks. Our investigation reveals that increasing LLM size enhances \textit{readability} and \textit{informativeness} in D2T tasks, but larger (in terms of size) LLMs may sacrifice \textit{faithfulness}. Moreover, small-sized LLMs show more resilience than larger ones when source-reference divergence is present.
Abstract:Warning: This paper contains examples of the language that some people may find offensive. Detecting and reducing hateful, abusive, offensive comments is a critical and challenging task on social media. Moreover, few studies aim to mitigate the intensity of hate speech. While studies have shown that context-level semantics are crucial for detecting hateful comments, most of this research focuses on English due to the ample datasets available. In contrast, low-resource languages, like Indian languages, remain under-researched because of limited datasets. Contrary to hate speech detection, hate intensity reduction remains unexplored in high-resource and low-resource languages. In this paper, we propose a novel end-to-end model, HCDIR, for Hate Context Detection, and Hate Intensity Reduction in social media posts. First, we fine-tuned several pre-trained language models to detect hateful comments to ascertain the best-performing hateful comments detection model. Then, we identified the contextual hateful words. Identification of such hateful words is justified through the state-of-the-art explainable learning model, i.e., Integrated Gradient (IG). Lastly, the Masked Language Modeling (MLM) model has been employed to capture domain-specific nuances to reduce hate intensity. We masked the 50\% hateful words of the comments identified as hateful and predicted the alternative words for these masked terms to generate convincing sentences. An optimal replacement for the original hate comments from the feasible sentences is preferred. Extensive experiments have been conducted on several recent datasets using automatic metric-based evaluation (BERTScore) and thorough human evaluation. To enhance the faithfulness in human evaluation, we arranged a group of three human annotators with varied expertise.
Abstract:White blood cells (WBCs) play a crucial role in safeguarding the human body against pathogens and foreign substances. Leveraging the abundance of WBC imaging data and the power of deep learning algorithms, automated WBC analysis has the potential for remarkable accuracy. However, the capability of deep learning models to explain their WBC classification remains largely unexplored. In this study, we introduce HemaX, an explainable deep neural network-based model that produces pathologist-like explanations using five attributes: granularity, cytoplasm color, nucleus shape, size relative to red blood cells, and nucleus to cytoplasm ratio (N:C), along with cell classification, localization, and segmentation. HemaX is trained and evaluated on a novel dataset, LeukoX, comprising 467 blood smear images encompassing ten (10) WBC types. The proposed model achieves impressive results, with an average classification accuracy of 81.08% and a Jaccard index of 89.16% for cell localization. Additionally, HemaX performs well in generating the five explanations with a normalized mean square error of 0.0317 for N:C ratio and over 80% accuracy for the other four attributes. Comprehensive experiments comparing against multiple state-of-the-art models demonstrate that HemaX's classification accuracy remains unaffected by its ability to provide explanations. Moreover, empirical analyses and validation by expert hematologists confirm the faithfulness of explanations predicted by our proposed model.