Abstract:Hematological disorders, which involve a variety of malignant conditions and genetic diseases affecting blood formation, present significant diagnostic challenges. One such major challenge in clinical settings is differentiating Erythroblast from WBCs. Our approach evaluates the efficacy of various machine learning (ML) classifiers$\unicode{x2014}$SVM, XG-Boost, KNN, and Random Forest$\unicode{x2014}$using the ResNet-50 deep learning model as a backbone in detecting and differentiating erythroblast blood smear images across training splits of different sizes. Our findings indicate that the ResNet50-SVM classifier consistently surpasses other models' overall test accuracy and erythroblast detection accuracy, maintaining high performance even with minimal training data. Even when trained on just 1% (168 images per class for eight classes) of the complete dataset, ML classifiers such as SVM achieved a test accuracy of 86.75% and an erythroblast precision of 98.9%, compared to 82.03% and 98.6% of pre-trained ResNet-50 models without any classifiers. When limited data is available, the proposed approach outperforms traditional deep learning models, thereby offering a solution for achieving higher classification accuracy for small and unique datasets, especially in resource-scarce settings.
Abstract:White blood cells (WBCs) play a crucial role in safeguarding the human body against pathogens and foreign substances. Leveraging the abundance of WBC imaging data and the power of deep learning algorithms, automated WBC analysis has the potential for remarkable accuracy. However, the capability of deep learning models to explain their WBC classification remains largely unexplored. In this study, we introduce HemaX, an explainable deep neural network-based model that produces pathologist-like explanations using five attributes: granularity, cytoplasm color, nucleus shape, size relative to red blood cells, and nucleus to cytoplasm ratio (N:C), along with cell classification, localization, and segmentation. HemaX is trained and evaluated on a novel dataset, LeukoX, comprising 467 blood smear images encompassing ten (10) WBC types. The proposed model achieves impressive results, with an average classification accuracy of 81.08% and a Jaccard index of 89.16% for cell localization. Additionally, HemaX performs well in generating the five explanations with a normalized mean square error of 0.0317 for N:C ratio and over 80% accuracy for the other four attributes. Comprehensive experiments comparing against multiple state-of-the-art models demonstrate that HemaX's classification accuracy remains unaffected by its ability to provide explanations. Moreover, empirical analyses and validation by expert hematologists confirm the faithfulness of explanations predicted by our proposed model.