Abstract:Hematological disorders, which involve a variety of malignant conditions and genetic diseases affecting blood formation, present significant diagnostic challenges. One such major challenge in clinical settings is differentiating Erythroblast from WBCs. Our approach evaluates the efficacy of various machine learning (ML) classifiers$\unicode{x2014}$SVM, XG-Boost, KNN, and Random Forest$\unicode{x2014}$using the ResNet-50 deep learning model as a backbone in detecting and differentiating erythroblast blood smear images across training splits of different sizes. Our findings indicate that the ResNet50-SVM classifier consistently surpasses other models' overall test accuracy and erythroblast detection accuracy, maintaining high performance even with minimal training data. Even when trained on just 1% (168 images per class for eight classes) of the complete dataset, ML classifiers such as SVM achieved a test accuracy of 86.75% and an erythroblast precision of 98.9%, compared to 82.03% and 98.6% of pre-trained ResNet-50 models without any classifiers. When limited data is available, the proposed approach outperforms traditional deep learning models, thereby offering a solution for achieving higher classification accuracy for small and unique datasets, especially in resource-scarce settings.
Abstract:This paper presents methods to identify the plastic waste based on its resin identification code to provide an efficient recycling of post-consumer plastic waste. We propose the design, training and testing of different machine learning techniques to (i) identify a plastic waste that belongs to the known categories of plastic waste when the system is trained and (ii) identify a new plastic waste that do not belong the any known categories of plastic waste while the system is trained. For the first case,we propose the use of one-shot learning techniques using Siamese and Triplet loss networks. Our proposed approach does not require any augmentation to increase the size of the database and achieved a high accuracy of 99.74%. For the second case, we propose the use of supervised and unsupervised dimensionality reduction techniques and achieved an accuracy of 95% to correctly identify a new plastic waste.
Abstract:The problem of segregating recyclable waste is fairly daunting for many countries. This article presents an approach for image based classification of plastic waste using one-shot learning techniques. The proposed approach exploits discriminative features generated via the siamese and triplet loss convolutional neural networks to help differentiate between 5 types of plastic waste based on their resin codes. The approach achieves an accuracy of 99.74% on the WaDaBa Database