Abstract:The evaluation of synthetic data generation is crucial, especially in the retail sector where data accuracy is paramount. This paper introduces a comprehensive framework for assessing synthetic retail data, focusing on fidelity, utility, and privacy. Our approach differentiates between continuous and discrete data attributes, providing precise evaluation criteria. Fidelity is measured through stability and generalizability. Stability ensures synthetic data accurately replicates known data distributions, while generalizability confirms its robustness in novel scenarios. Utility is demonstrated through the synthetic data's effectiveness in critical retail tasks such as demand forecasting and dynamic pricing, proving its value in predictive analytics and strategic planning. Privacy is safeguarded using Differential Privacy, ensuring synthetic data maintains a perfect balance between resembling training and holdout datasets without compromising security. Our findings validate that this framework provides reliable and scalable evaluation for synthetic retail data. It ensures high fidelity, utility, and privacy, making it an essential tool for advancing retail data science. This framework meets the evolving needs of the retail industry with precision and confidence, paving the way for future advancements in synthetic data methodologies.
Abstract:The development of open benchmarking platforms could greatly accelerate the adoption of AI agents in retail. This paper presents comprehensive simulations of customer shopping behaviors for the purpose of benchmarking reinforcement learning (RL) agents that optimize coupon targeting. The difficulty of this learning problem is largely driven by the sparsity of customer purchase events. We trained agents using offline batch data comprising summarized customer purchase histories to help mitigate this effect. Our experiments revealed that contextual bandit and deep RL methods that are less prone to over-fitting the sparse reward distributions significantly outperform static policies. This study offers a practical framework for simulating AI agents that optimize the entire retail customer journey. It aims to inspire the further development of simulation tools for retail AI systems.
Abstract:Significant research effort has been devoted in recent years to developing personalized pricing, promotions, and product recommendation algorithms that can leverage rich customer data to learn and earn. Systematic benchmarking and evaluation of these causal learning systems remains a critical challenge, due to the lack of suitable datasets and simulation environments. In this work, we propose a multi-stage model for simulating customer shopping behavior that captures important sources of heterogeneity, including price sensitivity and past experiences. We embedded this model into a working simulation environment -- RetailSynth. RetailSynth was carefully calibrated on publicly available grocery data to create realistic synthetic shopping transactions. Multiple pricing policies were implemented within the simulator and analyzed for impact on revenue, category penetration, and customer retention. Applied researchers can use RetailSynth to validate causal demand models for multi-category retail and to incorporate realistic price sensitivity into emerging benchmarking suites for personalized pricing, promotions, and product recommendations.