Abstract:Fully optimized automation of behavioral training protocols for lab animals like rodents has long been a coveted goal for researchers. It is an otherwise labor-intensive and time-consuming process that demands close interaction between the animal and the researcher. In this work, we used a data-driven approach to optimize the way rodents are trained in labs. In pursuit of our goal, we looked at data augmentation, a technique that scales well in data-poor environments. Using data augmentation, we built several artificial rodent models, which in turn would be used to build an efficient and automatic trainer. Then we developed a novel similarity metric based on the action probability distribution to measure the behavioral resemblance of our models to that of real rodents.