Abstract:Artificial neural networks (ANNs) based machine learning models and especially deep learning models have been widely applied in computer vision, signal processing, wireless communications, and many other domains, where complex numbers occur either naturally or by design. However, most of the current implementations of ANNs and machine learning frameworks are using real numbers rather than complex numbers. There are growing interests in building ANNs using complex numbers, and exploring the potential advantages of the so-called complex-valued neural networks (CVNNs) over their real-valued counterparts. In this paper, we discuss the recent development of CVNNs by performing a survey of the works on CVNNs in the literature. Specifically, a detailed review of various CVNNs in terms of activation function, learning and optimization, input and output representations, and their applications in tasks such as signal processing and computer vision are provided, followed by a discussion on some pertinent challenges and future research directions.
Abstract:Multi-access edge computing (MEC) has already shown the potential in enabling mobile devices to bear the computation-intensive applications by offloading some tasks to a nearby access point (AP) integrated with a MEC server (MES). However, due to the varying network conditions and limited computation resources of the MES, the offloading decisions taken by a mobile device and the computational resources allocated by the MES may not be efficiently achieved with the lowest cost. In this paper, we propose a dynamic offloading framework for the MEC network, in which the uplink non-orthogonal multiple access (NOMA) is used to enable multiple devices to upload their tasks via the same frequency band. We formulate the offloading decision problem as a multiclass classification problem and formulate the MES computational resource allocation problem as a regression problem. Then a multi-task learning based feedforward neural network (MTFNN) model is designed to jointly optimize the offloading decision and computational resource allocation. Numerical results illustrate that the proposed MTFNN outperforms the conventional optimization method in terms of inference accuracy and computation complexity.
Abstract:In this paper, we propose Device Authentication Code (DAC), a novel method for authenticating IoT devices with wireless interface by exploiting their radio frequency (RF) signatures. The proposed DAC is based on RF fingerprinting, information theoretic method, feature learning, and discriminatory power of deep learning. Specifically, an autoencoder is used to automatically extract features from the RF traces, and the reconstruction error is used as the DAC and this DAC is unique to the device and the particular message of interest. Then Kolmogorov-Smirnov (K-S) test is used to match the distribution of the reconstruction error generated by the autoencoder and the received message, and the result will determine whether the device of interest belongs to an authorized user. We validate this concept on two experimentally collected RF traces from six ZigBee and five universal software defined radio peripheral (USRP) devices, respectively. The traces span a range of Signalto- Noise Ratio by varying locations and mobility of the devices and channel interference and noise to ensure robustness of the model. Experimental results demonstrate that DAC is able to prevent device impersonation by extracting salient features that are unique to any wireless device of interest and can be used to identify RF devices. Furthermore, the proposed method does not need the RF traces of the intruder during model training yet be able to identify devices not seen during training, which makes it practical.