Abstract:This study introduces a groundbreaking optical coherence tomography (OCT) imaging system dedicated for high-throughput screening applications using ex vivo tissue culture. Leveraging OCT's non-invasive, high-resolution capabilities, the system is equipped with a custom-designed motorized platform and tissue detection ability for automated, successive imaging across samples. Transformer-based deep learning segmentation algorithms further ensure robust, consistent, and efficient readouts meeting the standards for screening assays. Validated using retinal explant cultures from a mouse model of retinal degeneration, the system provides robust, rapid, reliable, unbiased, and comprehensive readouts of tissue response to treatments. This fully automated OCT-based system marks a significant advancement in tissue screening, promising to transform drug discovery, as well as other relevant research fields.
Abstract:Optical coherence tomography (OCT) suffers from speckle noise, causing the deterioration of image quality, especially in high-resolution modalities like visible light OCT (vis-OCT). The potential of conventional supervised deep learning denoising methods is limited by the difficulty of obtaining clean data. Here, we proposed an innovative self-supervised strategy called Sub2Full (S2F) for OCT despeckling without clean data. This approach works by acquiring two repeated B-scans, splitting the spectrum of the first repeat as a low-resolution input, and utilizing the full spectrum of the second repeat as the high-resolution target. The proposed method was validated on vis-OCT retinal images visualizing sublaminar structures in outer retina and demonstrated superior performance over conventional Noise2Noise and Noise2Void schemes. The code is available at https://github.com/PittOCT/Sub2Full-OCT-Denoising.