Abstract:Drone-captured images present significant challenges in object detection due to varying shooting conditions, which can alter object appearance and shape. Factors such as drone altitude, angle, and weather cause these variations, influencing the performance of object detection algorithms. To tackle these challenges, we introduce an innovative vision-language approach using learnable prompts. This shift from conventional manual prompts aims to reduce domain-specific knowledge interference, ultimately improving object detection capabilities. Furthermore, we streamline the training process with a one-step approach, updating the learnable prompt concurrently with model training, enhancing efficiency without compromising performance. Our study contributes to domain-generalized object detection by leveraging learnable prompts and optimizing training processes. This enhances model robustness and adaptability across diverse environments, leading to more effective aerial object detection.
Abstract:Despite the recent development of deep learning-based point cloud upsampling, most MLP-based point cloud upsampling methods have limitations in that it is difficult to train the local and global structure of the point cloud at the same time. To solve this problem, we present a combined graph convolution and transformer for point cloud upsampling, denoted by PU-EdgeFormer. The proposed method constructs EdgeFormer unit that consists of graph convolution and multi-head self-attention modules. We employ graph convolution using EdgeConv, which learns the local geometry and global structure of point cloud better than existing point-to-feature method. Through in-depth experiments, we confirmed that the proposed method has better point cloud upsampling performance than the existing state-of-the-art method in both subjective and objective aspects. The code is available at https://github.com/dohoon2045/PU-EdgeFormer.