Abstract:LiDAR-based 3D object detectors have been largely utilized in various applications, including autonomous vehicles or mobile robots. However, LiDAR-based detectors often fail to adapt well to target domains with different sensor configurations (e.g., types of sensors, spatial resolution, or FOVs) and location shifts. Collecting and annotating datasets in a new setup is commonly required to reduce such gaps, but it is often expensive and time-consuming. Recent studies suggest that pre-trained backbones can be learned in a self-supervised manner with large-scale unlabeled LiDAR frames. However, despite their expressive representations, they remain challenging to generalize well without substantial amounts of data from the target domain. Thus, we propose a novel method, called Domain Adaptive Distill-Tuning (DADT), to adapt a pre-trained model with limited target data (approximately 100 LiDAR frames), retaining its representation power and preventing it from overfitting. Specifically, we use regularizers to align object-level and context-level representations between the pre-trained and finetuned models in a teacher-student architecture. Our experiments with driving benchmarks, i.e., Waymo Open dataset and KITTI, confirm that our method effectively finetunes a pre-trained model, achieving significant gains in accuracy.
Abstract:An autonomous driving system requires a 3D object detector, which must perceive all present road agents reliably to navigate an environment safely. However, real-world driving datasets often suffer from the problem of data imbalance, which causes difficulties in training a model that works well across all classes, resulting in an undesired imbalanced sub-optimal performance. In this work, we propose a method to address this data imbalance problem. Our method consists of two main components: (i) a LiDAR-based 3D object detector with per-class multiple detection heads where losses from each head are modified by dynamic weight average to be balanced. (ii) Contextual ground truth (GT) sampling, where we improve conventional GT sampling techniques by leveraging semantic information to augment point cloud with sampled ground truth GT objects. Our experiment with KITTI and nuScenes datasets confirms our proposed method's effectiveness in dealing with the data imbalance problem, producing better detection accuracy compared to existing approaches.