Abstract:To leverage the complex structures within heterogeneous graphs, recent studies on heterogeneous graph embedding use a hyperbolic space, characterized by a constant negative curvature and exponentially increasing space, which aligns with the structural properties of heterogeneous graphs. However, despite heterogeneous graphs inherently possessing diverse power-law structures, most hyperbolic heterogeneous graph embedding models use a single hyperbolic space for the entire heterogeneous graph, which may not effectively capture the diverse power-law structures within the heterogeneous graph. To address this limitation, we propose Multi-hyperbolic Space-based heterogeneous Graph Attention Network (MSGAT), which uses multiple hyperbolic spaces to effectively capture diverse power-law structures within heterogeneous graphs. We conduct comprehensive experiments to evaluate the effectiveness of MSGAT. The experimental results demonstrate that MSGAT outperforms state-of-the-art baselines in various graph machine learning tasks, effectively capturing the complex structures of heterogeneous graphs.
Abstract:As deep learning models become popular, there is a lot of need for deploying them to diverse device environments. Because it is costly to develop and optimize a neural network for every single environment, there is a line of research to search neural networks for multiple target environments efficiently. However, existing works for such a situation still suffer from requiring many GPUs and expensive costs. Motivated by this, we propose a novel neural network optimization framework named Bespoke for low-cost deployment. Our framework searches for a lightweight model by replacing parts of an original model with randomly selected alternatives, each of which comes from a pretrained neural network or the original model. In the practical sense, Bespoke has two significant merits. One is that it requires near zero cost for designing the search space of neural networks. The other merit is that it exploits the sub-networks of public pretrained neural networks, so the total cost is minimal compared to the existing works. We conduct experiments exploring Bespoke's the merits, and the results show that it finds efficient models for multiple targets with meager cost.