Abstract:Open-ended questions test a more thorough understanding than closed-ended questions and are often a preferred assessment method. However, open-ended questions are tedious to grade and subject to personal bias. Therefore, there have been efforts to speed up the grading process through automation. Short Answer Grading (SAG) systems aim to automatically score students' answers. Despite growth in SAG methods and capabilities, there exists no comprehensive short-answer grading benchmark across different subjects, grading scales, and distributions. Thus, it is hard to assess the capabilities of current automated grading methods in terms of their generalizability. In this preliminary work, we introduce the combined ASAG2024 benchmark to facilitate the comparison of automated grading systems. Combining seven commonly used short-answer grading datasets in a common structure and grading scale. For our benchmark, we evaluate a set of recent SAG methods, revealing that while LLM-based approaches reach new high scores, they still are far from reaching human performance. This opens up avenues for future research on human-machine SAG systems.
Abstract:The creation of high-quality ontologies is crucial for data integration and knowledge-based reasoning, specifically in the context of the rising data economy. However, automatic ontology matchers are often bound to the heuristics they are based on, leaving many matches unidentified. Interactive ontology matching systems involving human experts have been introduced, but they do not solve the fundamental issue of flexibly finding additional matches outside the scope of the implemented heuristics, even though this is highly demanded in industrial settings. Active machine learning methods appear to be a promising path towards a flexible interactive ontology matcher. However, off-the-shelf active learning mechanisms suffer from low query efficiency due to extreme class imbalance, resulting in a last-mile problem where high human effort is required to identify the remaining matches. To address the last-mile problem, this work introduces DualLoop, an active learning method tailored to ontology matching. DualLoop offers three main contributions: (1) an ensemble of tunable heuristic matchers, (2) a short-term learner with a novel query strategy adapted to highly imbalanced data, and (3) long-term learners to explore potential matches by creating and tuning new heuristics. We evaluated DualLoop on three datasets of varying sizes and domains. Compared to existing active learning methods, we consistently achieved better F1 scores and recall, reducing the expected query cost spent on finding 90% of all matches by over 50%. Compared to traditional interactive ontology matchers, we are able to find additional, last-mile matches. Finally, we detail the successful deployment of our approach within an actual product and report its operational performance results within the Architecture, Engineering, and Construction (AEC) industry sector, showcasing its practical value and efficiency.
Abstract:Text-to-SQL systems (also known as NL-to-SQL systems) have become an increasingly popular solution for bridging the gap between user capabilities and SQL-based data access. These systems translate user requests in natural language to valid SQL statements for a specific database. Recent Text-to-SQL systems have benefited from the rapid improvement of transformer-based language models. However, while Text-to-SQL systems that incorporate such models continuously reach new high scores on -- often synthetic -- benchmark datasets, a systematic exploration of their robustness towards different data models in a real-world, realistic scenario is notably missing. This paper provides the first in-depth evaluation of the data model robustness of Text-to-SQL systems in practice based on a multi-year international project focused on Text-to-SQL interfaces. Our evaluation is based on a real-world deployment of FootballDB, a system that was deployed over a 9 month period in the context of the FIFA World Cup 2022, during which about 6K natural language questions were asked and executed. All of our data is based on real user questions that were asked live to the system. We manually labeled and translated a subset of these questions for three different data models. For each data model, we explore the performance of representative Text-to-SQL systems and language models. We further quantify the impact of training data size, pre-, and post-processing steps as well as language model inference time. Our comprehensive evaluation sheds light on the design choices of real-world Text-to-SQL systems and their impact on moving from research prototypes to real deployments. Last, we provide a new benchmark dataset to the community, which is the first to enable the evaluation of different data models for the same dataset and is substantially more challenging than most previous datasets in terms of query complexity.