Abstract:With the growing interest in on On-orbit servicing (OOS) and Active Debris Removal (ADR) missions, spacecraft poses estimation algorithms are being developed using deep learning to improve the precision of this complex task and find the most efficient solution. With the advances of bio-inspired low-power solutions, such a spiking neural networks and event-based processing and cameras, and their recent work for space applications, we propose to investigate the feasibility of a fully event-based solution to improve event-based pose estimation for spacecraft. In this paper, we address the first event-based dataset SEENIC with real event frames captured by an event-based camera on a testbed. We show the methods and results of the first event-based solution for this use case, where our small spiking end-to-end network (S2E2) solution achieves interesting results over 21cm position error and 14degree rotation error, which is the first step towards fully event-based processing for embedded spacecraft pose estimation.
Abstract:The complexity of event-based object detection (OD) poses considerable challenges. Spiking Neural Networks (SNNs) show promising results and pave the way for efficient event-based OD. Despite this success, the path to efficient SNNs on embedded devices remains a challenge. This is due to the size of the networks required to accomplish the task and the ability of devices to take advantage of SNNs benefits. Even when "edge" devices are considered, they typically use embedded GPUs that consume tens of watts. In response to these challenges, our research introduces an embedded neuromorphic testbench that utilizes the SPiking Low-power Event-based ArchiTecture (SPLEAT) accelerator. Using an extended version of the Qualia framework, we can train, evaluate, quantize, and deploy spiking neural networks on an FPGA implementation of SPLEAT. We used this testbench to load a state-of-the-art SNN solution, estimate the performance loss associated with deploying the network on dedicated hardware, and run real-world event-based OD on neuromorphic hardware specifically designed for low-power spiking neural networks. Remarkably, our embedded spiking solution, which includes a model with 1.08 million parameters, operates efficiently with 490 mJ per prediction.