Abstract:Autonomous Driving (AD), the area of robotics with the greatest potential impact on society, has gained a lot of momentum in the last decade. As a result of this, the number of datasets in AD has increased rapidly. Creators and users of datasets can benefit from a better understanding of developments in the field. While scientometric analysis has been conducted in other fields, it rarely revolves around datasets. Thus, the impact, attention, and influence of datasets on autonomous driving remains a rarely investigated field. In this work, we provide a scientometric analysis for over 200 datasets in AD. We perform a rigorous evaluation of relations between available metadata and citation counts based on linear regression. Subsequently, we propose an Influence Score to assess a dataset already early on without the need for a track-record of citations, which is only available with a certain delay.
Abstract:Adversarial patch-based attacks aim to fool a neural network with an intentionally generated noise, which is concentrated in a particular region of an input image. In this work, we perform an in-depth analysis of different patch generation parameters, including initialization, patch size, and especially positioning a patch in an image during training. We focus on the object vanishing attack and run experiments with YOLOv3 as a model under attack in a white-box setting and use images from the COCO dataset. Our experiments have shown, that inserting a patch inside a window of increasing size during training leads to a significant increase in attack strength compared to a fixed position. The best results were obtained when a patch was positioned randomly during training, while patch position additionally varied within a batch.