Abstract:A method for cross-modality embedding of force profile and words is presented for synergistic coordination of verbal and haptic communication. When two people carry a large, heavy object together, they coordinate through verbal communication about the intended movements and physical forces applied to the object. This natural integration of verbal and physical cues enables effective coordination. Similarly, human-robot interaction could achieve this level of coordination by integrating verbal and haptic communication modalities. This paper presents a framework for embedding words and force profiles in a unified manner, so that the two communication modalities can be integrated and coordinated in a way that is effective and synergistic. Here, it will be shown that, although language and physical force profiles are deemed completely different, the two can be embedded in a unified latent space and proximity between the two can be quantified. In this latent space, a force profile and words can a) supplement each other, b) integrate the individual effects, and c) substitute in an exchangeable manner. First, the need for cross-modality embedding is addressed, and the basic architecture and key building block technologies are presented. Methods for data collection and implementation challenges will be addressed, followed by experimental results and discussions.
Abstract:The sustainable foraging problem is a dynamic environment testbed for exploring the forms of agent cognition in dealing with social dilemmas in a multi-agent setting. The agents need to resist the temptation of individual rewards through foraging and choose the collective long-term goal of sustainability. We investigate methods of online learning in Neuro-Evolution and Deep Recurrent Q-Networks to enable agents to attempt the problem one-shot as is often required by wicked social problems. We further explore if learning temporal dependencies with Long Short-Term Memory may be able to aid the agents in developing sustainable foraging strategies in the long term. It was found that the integration of Long Short-Term Memory assisted agents in developing sustainable strategies for a single agent, however failed to assist agents in managing the social dilemma that arises in the multi-agent scenario.