Abstract:We consider a blind identification problem in which we aim to recover a statistical model of a network without knowledge of the network's edges, but based solely on nodal observations of a certain process. More concretely, we focus on observations that consist of snapshots of a diffusive process that evolves over the unknown network. We model the network as generated from an independent draw from a latent stochastic block model (SBM), and our goal is to infer both the partition of the nodes into blocks, as well as the parameters of this SBM. We present simple spectral algorithms that provably solve the partition recovery and parameter estimation problems with high accuracy. Our analysis relies on recent results in random matrix theory and covariance estimation, and associated concentration inequalities. We illustrate our results with several numerical experiments.
Abstract:We formulate a private learning model to study an intrinsic tradeoff between privacy and query complexity in sequential learning. Our model involves a learner who aims to determine a scalar value, $v^*$, by sequentially querying an external database and receiving binary responses. In the meantime, an adversary observes the learner's queries, though not the responses, and tries to infer from them the value of $v^*$. The objective of the learner is to obtain an accurate estimate of $v^*$ using only a small number of queries, while simultaneously protecting her privacy by making $v^*$ provably difficult to learn for the adversary. Our main results provide tight upper and lower bounds on the learner's query complexity as a function of desired levels of privacy and estimation accuracy. We also construct explicit query strategies whose complexity is optimal up to an additive constant.
Abstract:We consider bandit problems involving a large (possibly infinite) collection of arms, in which the expected reward of each arm is a linear function of an $r$-dimensional random vector $\mathbf{Z} \in \mathbb{R}^r$, where $r \geq 2$. The objective is to minimize the cumulative regret and Bayes risk. When the set of arms corresponds to the unit sphere, we prove that the regret and Bayes risk is of order $\Theta(r \sqrt{T})$, by establishing a lower bound for an arbitrary policy, and showing that a matching upper bound is obtained through a policy that alternates between exploration and exploitation phases. The phase-based policy is also shown to be effective if the set of arms satisfies a strong convexity condition. For the case of a general set of arms, we describe a near-optimal policy whose regret and Bayes risk admit upper bounds of the form $O(r \sqrt{T} \log^{3/2} T)$.