Abstract:Humanitarian response to natural disasters and conflicts can be assisted by satellite image analysis. In a humanitarian context, very specific satellite image analysis tasks must be done accurately and in a timely manner to provide operational support. We present PulseSatellite, a collaborative satellite image analysis tool which leverages neural network models that can be retrained on-the fly and adapted to specific humanitarian contexts and geographies. We present two case studies, in mapping shelters and floods respectively, that illustrate the capabilities of PulseSatellite.
Abstract:Point of care diagnostics using microscopy and computer vision methods have been applied to a number of practical problems, and are particularly relevant to low-income, high disease burden areas. However, this is subject to the limitations in sensitivity and specificity of the computer vision methods used. In general, deep learning has recently revolutionised the field of computer vision, in some cases surpassing human performance for other object recognition tasks. In this paper, we evaluate the performance of deep convolutional neural networks on three different microscopy tasks: diagnosis of malaria in thick blood smears, tuberculosis in sputum samples, and intestinal parasite eggs in stool samples. In all cases accuracy is very high and substantially better than an alternative approach more representative of traditional medical imaging techniques.
Abstract:We propose a new method for detecting changes in Markov network structure between two sets of samples. Instead of naively fitting two Markov network models separately to the two data sets and figuring out their difference, we \emph{directly} learn the network structure change by estimating the ratio of Markov network models. This density-ratio formulation naturally allows us to introduce sparsity in the network structure change, which highly contributes to enhancing interpretability. Furthermore, computation of the normalization term, which is a critical bottleneck of the naive approach, can be remarkably mitigated. We also give the dual formulation of the optimization problem, which further reduces the computation cost for large-scale Markov networks. Through experiments, we demonstrate the usefulness of our method.
Abstract:Hidden Markov models and their variants are the predominant sequential classification method in such domains as speech recognition, bioinformatics and natural language processing. Being generative rather than discriminative models, however, their classification performance is a drawback. In this paper we apply ideas from the field of density ratio estimation to bypass the difficult step of learning likelihood functions in HMMs. By reformulating inference and model fitting in terms of density ratios and applying a fast kernel-based estimation method, we show that it is possible to obtain a striking increase in discriminative performance while retaining the probabilistic qualities of the HMM. We demonstrate experimentally that this formulation makes more efficient use of training data than alternative approaches.