Abstract:Autoregressive language models like GPT aim at predicting next tokens, while autoencoding models such as BERT are trained on tasks such as predicting masked tokens. We train a decoder only architecture for predicting the second last token for a sequence of tokens. Our approach yields higher computational training efficiency than BERT-style models by employing a structured deterministic approach towards masking tokens. We use our model to improve the next token predictions of a standard GPT by combining both predictions in a ``generate-then-refine'' approach. We show on different variants of GPT-2 and different datasets that (not unexpectedly) second last token predictions are much more accurate, i.e., more than 15\% higher accuracy than ordinary next token predictors. The ``generate-then-refine'' approach also demonstrates notable improvements in next-token predictions, yielding smaller yet consistent and significant gains.
Abstract:The domain of computational design, driven by advancements in Generative AI, is transforming creative fields. We explore the transformative effects of Generative AI on the architectural design process and discuss the role of the architect. The case of architecture is interesting as designing houses is complex, involving extensive customer interaction. We employ a within-subject experiment using a popular general-purpose text-to-image tool for generating designs and providing feedback on existing designs, followed by expert interviews. The study reveals that AI can disrupt the ideation phase by enabling clients to engage in the design process through rapid visualization of their own ideas. In turn, the architect's role shifts more towards assessing the feasibility of designs generated conjointly by clients and AI. Our study also shows that while AI can provide valuable feedback on designs, it might fail to generate such designs, allowing for interesting connections to foundations in computer science, i.e., NP-completeness. AI's feedback also tends to hamper creativity and innovation by suggesting altering novel, innovative approaches toward more standardized designs. Our study also reveals that there is uncertainty among architects about the interpretative sovereignty of architecture and loss of meaning and identity when AI increasingly takes over authorship in the design process.
Abstract:Large language models (LLM)'s are increasingly used for topic modeling outperforming classical topic models such as LDA. Commonly, pre-trained LLM encoders such as BERT are used out-of-the-box despite the fact that fine-tuning is known to improve LLMs considerably. The challenge lies in obtaining a suitable (labeled) dataset for fine-tuning. In this paper, we use the recent idea to use bag of sentences as the elementary unit in computing topics. In turn, we derive an approach FT-Topic to perform unsupervised fine-tuning relying primarily on two steps for constructing a training dataset in an automatic fashion. First, a heuristic method to identifies pairs of sentence groups that are either assumed to be of the same or different topics. Second, we remove sentence pairs that are likely labeled incorrectly. The dataset is then used to fine-tune an encoder LLM, which can be leveraged by any topic modeling approach using embeddings. However, in this work, we demonstrate its effectiveness by deriving a novel state-of-the-art topic modeling method called SenClu, which achieves fast inference through an expectation-maximization algorithm and hard assignments of sentence groups to a single topic, while giving users the possibility to encode prior knowledge on the topic-document distribution. Code is at \url{https://github.com/JohnTailor/FT-Topic}
Abstract:Transformers have become the de-facto standard model in artificial intelligence since 2017 despite numerous shortcomings ranging from energy inefficiency to hallucinations. Research has made a lot of progress in improving elements of transformers, and, more generally, deep learning manifesting in many proposals for architectures, layers, optimization objectives, and optimization techniques. For researchers it is difficult to keep track of such developments on a broader level. We provide a comprehensive overview of the many important, recent works in these areas to those who already have a basic understanding of deep learning. Our focus differs from other works, as we target specifically novel, alternative potentially disruptive approaches to transformers as well as successful ideas of recent deep learning. We hope that such a holistic and unified treatment of influential, recent works and novel ideas helps researchers to form new connections between diverse areas of deep learning. We identify and discuss multiple patterns that summarize the key strategies for successful innovations over the last decade as well as works that can be seen as rising stars. Especially, we discuss attempts on how to improve on transformers covering (partially) proven methods such as state space models but also including far-out ideas in deep learning that seem promising despite not achieving state-of-the-art results. We also cover a discussion on recent state-of-the-art models such as OpenAI's GPT series and Meta's LLama models and, Google's Gemini model family.
Abstract:This study explores real-world human interactions with large language models (LLMs) in diverse, unconstrained settings in contrast to most prior research focusing on ethically trimmed models like ChatGPT for specific tasks. We aim to understand the originator of toxicity. Our findings show that although LLMs are rightfully accused of providing toxic content, it is mostly demanded or at least provoked by humans who actively seek such content. Our manual analysis of hundreds of conversations judged as toxic by APIs commercial vendors, also raises questions with respect to current practices of what user requests are refused to answer. Furthermore, we conjecture based on multiple empirical indicators that humans exhibit a change of their mental model, switching from the mindset of interacting with a machine more towards interacting with a human.
Abstract:Generative AI (GenAI) marked a shift from AI being able to recognize to AI being able to generate solutions for a wide variety of tasks. As the generated solutions and applications become increasingly more complex and multi-faceted, novel needs, objectives, and possibilities have emerged for explainability (XAI). In this work, we elaborate on why XAI has gained importance with the rise of GenAI and its challenges for explainability research. We also unveil novel and emerging desiderata that explanations should fulfill, covering aspects such as verifiability, interactivity, security, and cost. To this end, we focus on surveying existing works. Furthermore, we provide a taxonomy of relevant dimensions that allows us to better characterize existing XAI mechanisms and methods for GenAI. We discuss different avenues to ensure XAI, from training data to prompting. Our paper offers a short but concise technical background of GenAI for non-technical readers, focusing on text and images to better understand novel or adapted XAI techniques for GenAI. However, due to the vast array of works on GenAI, we decided to forego detailed aspects of XAI related to evaluation and usage of explanations. As such, the manuscript interests both technically oriented people and other disciplines, such as social scientists and information systems researchers. Our research roadmap provides more than ten directions for future investigation.
Abstract:The learning dynamics of deep neural networks are not well understood. The information bottleneck (IB) theory proclaimed separate fitting and compression phases. But they have since been heavily debated. We comprehensively analyze the learning dynamics by investigating a layer's reconstruction ability of the input and prediction performance based on the evolution of parameters during training. We empirically show the existence of three phases using common datasets and architectures such as ResNet and VGG: (i) near constant reconstruction loss, (ii) decrease, and (iii) increase. We also derive an empirically grounded data model and prove the existence of phases for single-layer networks. Technically, our approach leverages classical complexity analysis. It differs from IB by relying on measuring reconstruction loss rather than information theoretic measures to relate information of intermediate layers and inputs. Our work implies a new best practice for transfer learning: We show empirically that the pre-training of a classifier should stop well before its performance is optimal.
Abstract:Large language models LLMs like ChatGPT have reached the 100 Mio user barrier in record time and might increasingly enter all areas of our life leading to a diverse set of interactions between those Artificial Intelligence models and humans. While many studies have discussed governance and regulations deductively from first-order principles, few studies provide an inductive, data-driven lens based on observing dialogues between humans and LLMs especially when it comes to non-collaborative, competitive situations that have the potential to pose a serious threat to people. In this work, we conduct a user study engaging over 40 individuals across all age groups in price negotiations with an LLM. We explore how people interact with an LLM, investigating differences in negotiation outcomes and strategies. Furthermore, we highlight shortcomings of LLMs with respect to their reasoning capabilities and, in turn, susceptiveness to prompt hacking, which intends to manipulate the LLM to make agreements that are against its instructions or beyond any rationality. We also show that the negotiated prices humans manage to achieve span a broad range, which points to a literacy gap in effectively interacting with LLMs.
Abstract:As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper not only highlights the advancements in XAI and its application in real-world scenarios but also addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. Our goal is to put forward a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 27 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders.
Abstract:Neural networks are not learning optimal decision boundaries. We show that decision boundaries are situated in areas of low training data density. They are impacted by few training samples which can easily lead to overfitting. We provide a simple algorithm performing a weighted average of the prediction of a sample and its nearest neighbors' (computed in latent space) leading to a minor favorable outcomes for a variety of important measures for neural networks. In our evaluation, we employ various self-trained and pre-trained convolutional neural networks to show that our approach improves (i) resistance to label noise, (ii) robustness against adversarial attacks, (iii) classification accuracy, and to some degree even (iv) interpretability. While improvements are not necessarily large in all four areas, our approach is conceptually simple, i.e., improvements come without any modification to network architecture, training procedure or dataset. Furthermore, they are in stark contrast to prior works that often require trade-offs among the four objectives or provide valuable, but non-actionable insights.