Abstract:There is an increasing need to comprehensively characterize the kinematic performances of different Micromobility Vehicles (MMVs). This study aims to: 1) characterize the kinematic behaviors of different MMVs during emergency maneuvers; 2) explore the influence of different MMV power sources on the device performances; 3) investigate if piecewise linear models are suitable for modeling MMV trajectories. A test track experiment where 40 frequent riders performed emergency braking and swerving maneuvers riding a subset of electric MMVs, their traditional counterparts, and, in some cases, behaving as running pedestrians. A second experiment was conducted to determine the MMVs swerving lower boundaries. Device power source resulted having a statistically significant influence on kinematic capabilities of the MMVs: while e-MMVs displayed superior braking capabilities compared to their traditional counterparts, the opposite was observed in terms of swerving performance. Furthermore, performances varied significantly across the different MMV typologies, with handlebar-based devices consistently outperforming the handlebar-less devices across the metrics considered. The piecewise linear models used for braking profiles fit well for most MMVs, except for skateboards and pedestrians due to foot-ground engagement. These findings underscore that the effectiveness of steering or braking in preventing collisions may vary depending on the type and power source of the device. This study also demonstrates the applicability of piecewise linear models for generating parameterized functions that accurately model braking trajectories, providing a valuable resource for automated systems developers. The model, however, also reveals that the single brake ramp assumption does not apply for certain types of MMVs or for pedestrians, indicating the necessity for further improvements.
Abstract:The quantitative measurement of how and when we experience surprise has mostly remained limited to laboratory studies, and its extension to naturalistic settings has been challenging. Here we demonstrate, for the first time, how computational models of surprise rooted in cognitive science and neuroscience combined with state-of-the-art machine learned generative models can be used to detect surprising human behavior in complex, dynamic environments like road traffic. In traffic safety, such models can support the identification of traffic conflicts, modeling of road user response time, and driving behavior evaluation for both human and autonomous drivers. We also present novel approaches to quantify surprise and use naturalistic driving scenarios to demonstrate a number of advantages over existing surprise measures from the literature. Modeling surprising behavior using learned generative models is a novel concept that can be generalized beyond traffic safety to any dynamic real-world environment.
Abstract:Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies. Prior models developed from control theory and physics-based rules are limited in automated vehicle applications due to their restricted behavioral repertoire. Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability, i.e., an understandable link between input data and output behaviors. We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability. We assessed the proposed model, the Active Inference Driving Agent (AIDA), through a benchmark analysis against the rule-based Intelligent Driver Model, and two neural network Behavior Cloning models. The models were trained and tested on a real-world driving dataset using a consistent process. The testing results showed that the AIDA predicted driving controls significantly better than the rule-based Intelligent Driver Model and had similar accuracy to the data-driven neural network models in three out of four evaluations. Subsequent interpretability analyses illustrated that the AIDA's learned distributions were consistent with driver behavior theory and that visualizations of the distributions could be used to directly comprehend the model's decision making process and correct model errors attributable to limited training data. The results indicate that the AIDA is a promising alternative to black-box data-driven models and suggest a need for further research focused on modeling driving style and model training with more diverse datasets.