Abstract:The global Biochar Industry has witnessed a surge in biochar production, with a total of 350k mt/year production in 2023. With the pressing climate goals set and the potential of Biochar Carbon Removal (BCR) as a climate-relevant technology, scaling up the number of new plants to over 1000 facilities per year by 2030 becomes imperative. However, such a massive scale-up presents not only technical challenges but also control and regulation issues, ensuring maximal output of plants while conforming to regulatory requirements. In this paper, we present a novel method of optimizing the process of a biochar plant based on machine learning methods. We show how a standard Random Forest Regressor can be used to model the states of the pyrolysis machine, the physics of which remains highly complex. This model then serves as a surrogate of the machine -- reproducing several key outcomes of the machine -- in a numerical optimization. This, in turn, could enable us to reduce NOx emissions -- a key regulatory goal in that industry -- while achieving maximal output still. In a preliminary test our approach shows remarkable results, proves to be applicable on two different machines from different manufacturers, and can be implemented on standard Internet of Things (IoT) devices more generally.
Abstract:Prior skin image datasets have not addressed patient-level information obtained from multiple skin lesions from the same patient. Though artificial intelligence classification algorithms have achieved expert-level performance in controlled studies examining single images, in practice dermatologists base their judgment holistically from multiple lesions on the same patient. The 2020 SIIM-ISIC Melanoma Classification challenge dataset described herein was constructed to address this discrepancy between prior challenges and clinical practice, providing for each image in the dataset an identifier allowing lesions from the same patient to be mapped to one another. This patient-level contextual information is frequently used by clinicians to diagnose melanoma and is especially useful in ruling out false positives in patients with many atypical nevi. The dataset represents 2,056 patients from three continents with an average of 16 lesions per patient, consisting of 33,126 dermoscopic images and 584 histopathologically confirmed melanomas compared with benign melanoma mimickers.