Abstract:Robust and precise robotic assembly entails insertion of constituent components. Insertion success is hindered when noise in scene understanding exceeds tolerance limits, especially when fabricated with tight tolerances. In this work, we propose ContactFusion which combines global mapping with local contact information, fusing point clouds with force sensing. Our method entails a Rejection Sampling based contact occupancy sensing procedure which estimates contact locations on the end-effector from Force/Torque sensing at the wrist. We demonstrate how to fuse contact with visual information into a Stochastic Poisson Surface Map (SPSMap) - a map representation that can be updated with the Stochastic Poisson Surface Reconstruction (SPSR) algorithm. We first validate the contact occupancy sensor in simulation and show its ability to detect the contact location on the robot from force sensing information. Then, we evaluate our method in a peg-in-hole task, demonstrating an improvement in the hole pose estimate with the fusion of the contact information with the SPSMap.
Abstract:Recognising the characteristics of objects while a robot handles them is crucial for adjusting motions that ensure stable and efficient interactions with containers. Ahead of realising stable and efficient robot motions for handling/transferring the containers, this work aims to recognise the latent unobservable object characteristics. While vision is commonly used for object recognition by robots, it is ineffective for detecting hidden objects. However, recognising objects indirectly using other sensors is a challenging task. To address this challenge, we propose a cross-modal transfer learning approach from vision to haptic-audio. We initially train the model with vision, directly observing the target object. Subsequently, we transfer the latent space learned from vision to a second module, trained only with haptic-audio and motor data. This transfer learning framework facilitates the representation of object characteristics using indirect sensor data, thereby improving recognition accuracy. For evaluating the recognition accuracy of our proposed learning framework we selected shape, position, and orientation as the object characteristics. Finally, we demonstrate online recognition of both trained and untrained objects using the humanoid robot Nextage Open.