Abstract:We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the output of the algorithm and the sensitive variable are continuous. Most of prior work deals with discrete sensitive variables, meaning that the biases are measured for subgroups of persons defined by a label, leaving out important algorithmic bias cases, where the sensitive variable is continuous. Typical examples are unfair decisions made with respect to the age or the financial status. In our work, we then propose a bias mitigation strategy for continuous sensitive variables, based on the notion of endogeneity which comes from the field of econometrics. In addition to solve this new problem, our bias mitigation strategy is a weakly supervised learning method which requires that a small portion of the data can be measured in a fair manner. It is model agnostic, in the sense that it does not make any hypothesis on the prediction model. It also makes use of a reasonably large amount of input observations and their corresponding predictions. Only a small fraction of the true output predictions should be known. This therefore limits the need for expert interventions. Results obtained on synthetic data show the effectiveness of our approach for examples as close as possible to real-life applications in econometrics.
Abstract:A number of Multiple Criteria Decision Analysis (MCDA) methods have been developed to rank alternatives based on several decision criteria. Usually, MCDA methods deal with the criteria value at the time the decision is made without considering their evolution over time. However, it may be relevant to consider the criteria' time series since providing essential information for decision-making (e.g., an improvement of the criteria). To deal with this issue, we propose a new approach to rank the alternatives based on the criteria time-series features (tendency, variance, etc.). In this novel approach, the data is structured in three dimensions, which require a more complex data structure, as the \textit{tensors}, instead of the classical matrix representation used in MCDA. Consequently, we propose an extension for the TOPSIS method to handle a tensor rather than a matrix. Computational results reveal that it is possible to rank the alternatives from a new perspective by considering meaningful decision-making information.
Abstract:In dimension reduction problems, the adopted technique may produce disparities between the representation errors of two or more different groups. For instance, in the projected space, a specific class can be better represented in comparison with the other ones. Depending on the situation, this unfair result may introduce ethical concerns. In this context, this paper investigates how a fairness measure can be considered when performing dimension reduction through principal component analysis. Since both reconstruction error and fairness measure must be taken into account, we propose a multi-objective-based approach to tackle the Fair Principal Component Analysis problem. The experiments attest that a fairer result can be achieved with a very small loss in the reconstruction error.