Abstract:Oracle Bone Script (OBS), one of the earliest known forms of ancient Chinese writing, holds invaluable insights into the humanities and geography of the Shang Dynasty, dating back 3,000 years. The immense historical and cultural significance of these writings cannot be overstated. However, the passage of time has obscured much of their meaning, presenting a significant challenge in deciphering these ancient texts. With the advent of Artificial Intelligence (AI), employing AI to assist in interpreting OBS has become a feasible option. Yet, progress in this area has been hindered by a lack of high-quality datasets. To address this issue, this paper details the creation of the HUST-OBS dataset. This dataset encompasses 77,064 images of 1,588 individual deciphered scripts and 62,989 images of 9,411 undeciphered characters, with a total of 140,053 images, compiled from diverse sources. Additionally, all images and labels have been reviewed and corrected by experts in oracle bone studies. The hope is that this dataset could inspire and assist future research in deciphering those unknown OBS.
Abstract:The earliest extant Chinese characters originate from oracle bone inscriptions, which are closely related to other East Asian languages. These inscriptions hold immense value for anthropology and archaeology. However, deciphering oracle bone script remains a formidable challenge, with only approximately 1,600 of the over 4,500 extant characters elucidated to date. Further scholarly investigation is required to comprehensively understand this ancient writing system. Artificial Intelligence technology is a promising avenue for deciphering oracle bone characters, particularly concerning their evolution. However, one of the challenges is the lack of datasets mapping the evolution of these characters over time. In this study, we systematically collected ancient characters from authoritative texts and websites spanning six historical stages: Oracle Bone Characters - OBC (15th century B.C.), Bronze Inscriptions - BI (13th to 221 B.C.), Seal Script - SS (11th to 8th centuries B.C.), Spring and Autumn period Characters - SAC (770 to 476 B.C.), Warring States period Characters - WSC (475 B.C. to 221 B.C.), and Clerical Script - CS (221 B.C. to 220 A.D.). Subsequently, we constructed an extensive dataset, namely EVolution Oracle Bone Characters (EVOBC), consisting of 229,170 images representing 13,714 distinct character categories. We conducted validation and simulated deciphering on the constructed dataset, and the results demonstrate its high efficacy in aiding the study of oracle bone script. This openly accessible dataset aims to digitalize ancient Chinese scripts across multiple eras, facilitating the decipherment of oracle bone script by examining the evolution of glyph forms.