Abstract:In this paper, we propose ShapTST, a framework that enables time-series transformers to efficiently generate Shapley-value-based explanations alongside predictions in a single forward pass. Shapley values are widely used to evaluate the contribution of different time-steps and features in a test sample, and are commonly generated through repeatedly inferring on each sample with different parts of information removed. Therefore, it requires expensive inference-time computations that occur at every request for model explanations. In contrast, our framework unifies the explanation and prediction in training through a novel Shapley-based pre-training design, which eliminates the undesirable test-time computation and replaces it with a single-time pre-training. Moreover, this specialized pre-training benefits the prediction performance by making the transformer model more effectively weigh different features and time-steps in the time-series, particularly improving the robustness against data noise that is common to raw time-series data. We experimentally validated our approach on eight public datasets, where our time-series model achieved competitive results in both classification and regression tasks, while providing Shapley-based explanations similar to those obtained with post-hoc computation. Our work offers an efficient and explainable solution for time-series analysis tasks in the safety-critical applications.
Abstract:Fuzzy Graph Attention Network (FGAT), which combines Fuzzy Rough Sets and Graph Attention Networks, has shown promise in tasks requiring robust graph-based learning. However, existing models struggle to effectively capture dependencies from multiple perspectives, limiting their ability to model complex data. To address this gap, we propose the Multi-view Fuzzy Graph Attention Network (MFGAT), a novel framework that constructs and aggregates multi-view information using a specially designed Transformation Block. This block dynamically transforms data from multiple aspects and aggregates the resulting representations via a weighted sum mechanism, enabling comprehensive multi-view modeling. The aggregated information is fed into FGAT to enhance fuzzy graph convolutions. Additionally, we introduce a simple yet effective learnable global pooling mechanism for improved graph-level understanding. Extensive experiments on graph classification tasks demonstrate that MFGAT outperforms state-of-the-art baselines, underscoring its effectiveness and versatility.
Abstract:Missing data is a pervasive challenge in wireless networks and many other domains, often compromising the performance of machine learning and deep learning models. To address this, we propose a novel framework, FGATT, that combines the Fuzzy Graph Attention Network (FGAT) with the Transformer encoder to perform robust and accurate data imputation. FGAT leverages fuzzy rough sets and graph attention mechanisms to capture spatial dependencies dynamically, even in scenarios where predefined spatial information is unavailable. The Transformer encoder is employed to model temporal dependencies, utilizing its self-attention mechanism to focus on significant time-series patterns. A self-adaptive graph construction method is introduced to enable dynamic connectivity learning, ensuring the framework's applicability to a wide range of wireless datasets. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods in imputation accuracy and robustness, particularly in scenarios with substantial missing data. The proposed model is well-suited for applications in wireless sensor networks and IoT environments, where data integrity is critical.
Abstract:Large Language Models (LLMs) have revolutionized natural language processing (NLP) by delivering state-of-the-art performance across a variety of tasks. Among these, Transformer-based models like BERT and GPT rely on pooling layers to aggregate token-level embeddings into sentence-level representations. Common pooling mechanisms such as Mean, Max, and Weighted Sum play a pivotal role in this aggregation process. Despite their widespread use, the comparative performance of these strategies on different LLM architectures remains underexplored. To address this gap, this paper investigates the effects of these pooling mechanisms on two prominent LLM families -- BERT and GPT, in the context of sentence-level sentiment analysis. Comprehensive experiments reveal that each pooling mechanism exhibits unique strengths and weaknesses depending on the task's specific requirements. Our findings underline the importance of selecting pooling methods tailored to the demands of particular applications, prompting a re-evaluation of common assumptions regarding pooling operations. By offering actionable insights, this study contributes to the optimization of LLM-based models for downstream tasks.
Abstract:Link prediction is crucial for understanding complex networks but traditional Graph Neural Networks (GNNs) often rely on random negative sampling, leading to suboptimal performance. This paper introduces Fuzzy Graph Attention Networks (FGAT), a novel approach integrating fuzzy rough sets for dynamic negative sampling and enhanced node feature aggregation. Fuzzy Negative Sampling (FNS) systematically selects high-quality negative edges based on fuzzy similarities, improving training efficiency. FGAT layer incorporates fuzzy rough set principles, enabling robust and discriminative node representations. Experiments on two research collaboration networks demonstrate FGAT's superior link prediction accuracy, outperforming state-of-the-art baselines by leveraging the power of fuzzy rough sets for effective negative sampling and node feature learning.