Abstract:Diffusion models have become a cornerstone in image editing, offering flexibility with language prompts and source images. However, a key challenge is attribute leakage, where unintended modifications occur in non-target regions or within target regions due to attribute interference. Existing methods often suffer from leakage due to naive text embeddings and inadequate handling of End-of-Sequence (EOS) token embeddings. To address this, we propose ALE-Edit (Attribute-leakage-free editing), a novel framework to minimize attribute leakage with three components: (1) Object-Restricted Embeddings (ORE) to localize object-specific attributes in text embeddings, (2) Region-Guided Blending for Cross-Attention Masking (RGB-CAM) to align attention with target regions, and (3) Background Blending (BB) to preserve non-edited regions. Additionally, we introduce ALE-Bench, a benchmark for evaluating attribute leakage with new metrics for target-external and target-internal leakage. Experiments demonstrate that our framework significantly reduces attribute leakage while maintaining high editing quality, providing an efficient and tuning-free solution for multi-object image editing.
Abstract:We consider the problem of machine unlearning to erase a target dataset, which causes an unwanted behavior, from the trained model when the training dataset is not given. Previous works have assumed that the target dataset indicates all the training data imposing the unwanted behavior. However, it is often infeasible to obtain such a complete indication. We hence address a practical scenario of unlearning provided a few samples of target data, so-called few-shot unlearning. To this end, we devise a straightforward framework, including a new model inversion technique to retrieve the training data from the model, followed by filtering out samples similar to the target samples and then relearning. We demonstrate that our method using only a subset of target data can outperform the state-of-the-art methods with a full indication of target data.