Abstract:Due to its ability of breaking the double-fading effect faced by passive intelligent reflecting surface (IRS), active IRS is evolving a potential technique for future 6G wireless network. To fully exploit the amplifying gain achieved by active IRS, two high-rate methods, maximum ratio reflecting (MRR) and selective ratio reflecting (SRR) are presented, which are motivated by maximum ratio combining and selective ratio combining. Moreover, both MRR and SRR are in closed-form. To further improve the rate, a maximum reflected-signal-to-noise ratio (Max-RSNR) is first proposed with an alternately iterative infrastructure between adjusting the norm of beamforming vector and its normalized vector. This may make a substantial rate enhancement over existing equal-gain reflecting (EGR). Simulation results show the proposed three methods perform much better than existing method EGR in terms of rate. They are in decreasing order of rate performance: Max-RSNR, MRR, SRR, and EGR.