Abstract:Cross-corpus speech emotion recognition (SER) aims to transfer emotional knowledge from a labeled source corpus to an unlabeled corpus. However, prior methods require access to source data during adaptation, which is unattainable in real-life scenarios due to data privacy protection concerns. This paper tackles a more practical task, namely source-free cross-corpus SER, where a pre-trained source model is adapted to the target domain without access to source data. To address the problem, we propose a novel method called emotion-aware contrastive adaptation network (ECAN). The core idea is to capture local neighborhood information between samples while considering the global class-level adaptation. Specifically, we propose a nearest neighbor contrastive learning to promote local emotion consistency among features of highly similar samples. Furthermore, relying solely on nearest neighborhoods may lead to ambiguous boundaries between clusters. Thus, we incorporate supervised contrastive learning to encourage greater separation between clusters representing different emotions, thereby facilitating improved class-level adaptation. Extensive experiments indicate that our proposed ECAN significantly outperforms state-of-the-art methods under the source-free cross-corpus SER setting on several speech emotion corpora.
Abstract:In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks.
Abstract:In this paper, we propose a novel deep transfer learning method called deep implicit distribution alignment networks (DIDAN) to deal with cross-corpus speech emotion recognition (SER) problem, in which the labeled training (source) and unlabeled testing (target) speech signals come from different corpora. Specifically, DIDAN first adopts a simple deep regression network consisting of a set of convolutional and fully connected layers to directly regress the source speech spectrums into the emotional labels such that the proposed DIDAN can own the emotion discriminative ability. Then, such ability is transferred to be also applicable to the target speech samples regardless of corpus variance by resorting to a well-designed regularization term called implicit distribution alignment (IDA). Unlike widely-used maximum mean discrepancy (MMD) and its variants, the proposed IDA absorbs the idea of sample reconstruction to implicitly align the distribution gap, which enables DIDAN to learn both emotion discriminative and corpus invariant features from speech spectrums. To evaluate the proposed DIDAN, extensive cross-corpus SER experiments on widely-used speech emotion corpora are carried out. Experimental results show that the proposed DIDAN can outperform lots of recent state-of-the-art methods in coping with the cross-corpus SER tasks.