Abstract:Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced by Large Language Models (LLMs), which enable robots to better understand complex language commands and perform advanced tasks with enhanced comprehension and adaptability, highlighting their potential to improve embodied AI capabilities. However, this advancement also introduces safety challenges, particularly in robotic navigation tasks. Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections, resulting in unsafe behaviours such as detours or collisions. To address these issues, we propose \textit{SafeEmbodAI}, a safety framework for integrating mobile robots into embodied AI systems. \textit{SafeEmbodAI} incorporates secure prompting, state management, and safety validation mechanisms to secure and assist LLMs in reasoning through multi-modal data and validating responses. We designed a metric to evaluate mission-oriented exploration, and evaluations in simulated environments demonstrate that our framework effectively mitigates threats from malicious commands and improves performance in various environment settings, ensuring the safety of embodied AI systems. Notably, In complex environments with mixed obstacles, our method demonstrates a significant performance increase of 267\% compared to the baseline in attack scenarios, highlighting its robustness in challenging conditions.
Abstract:The integration of Large Language Models (LLMs) like GPT-4o into robotic systems represents a significant advancement in embodied artificial intelligence. These models can process multi-modal prompts, enabling them to generate more context-aware responses. However, this integration is not without challenges. One of the primary concerns is the potential security risks associated with using LLMs in robotic navigation tasks. These tasks require precise and reliable responses to ensure safe and effective operation. Multi-modal prompts, while enhancing the robot's understanding, also introduce complexities that can be exploited maliciously. For instance, adversarial inputs designed to mislead the model can lead to incorrect or dangerous navigational decisions. This study investigates the impact of prompt injections on mobile robot performance in LLM-integrated systems and explores secure prompt strategies to mitigate these risks. Our findings demonstrate a substantial overall improvement of approximately 30.8% in both attack detection and system performance with the implementation of robust defence mechanisms, highlighting their critical role in enhancing security and reliability in mission-oriented tasks.
Abstract:Our paper provides empirical comparisons between recent IDSs to provide an objective comparison between them to help users choose the most appropriate solution based on their requirements. Our results show that no one solution is the best, but is dependent on external variables such as the types of attacks, complexity, and network environment in the dataset. For example, BoT_IoT and Stratosphere IoT datasets both capture IoT-related attacks, but the deep neural network performed the best when tested using the BoT_IoT dataset while HELAD performed the best when tested using the Stratosphere IoT dataset. So although we found that a deep neural network solution had the highest average F1 scores on tested datasets, it is not always the best-performing one. We further discuss difficulties in using IDS from literature and project repositories, which complicated drawing definitive conclusions regarding IDS selection.