System Stars
Abstract:Machine learning (ML) fairness research tends to focus primarily on mathematically-based interventions on often opaque algorithms or models and/or their immediate inputs and outputs. Such oversimplified mathematical models abstract away the underlying societal context where ML models are conceived, developed, and ultimately deployed. As fairness itself is a socially constructed concept that originates from that societal context along with the model inputs and the models themselves, a lack of an in-depth understanding of societal context can easily undermine the pursuit of ML fairness. In this paper, we outline three new tools to improve the comprehension, identification and representation of societal context. First, we propose a complex adaptive systems (CAS) based model and definition of societal context that will help researchers and product developers to expand the abstraction boundary of ML fairness work to include societal context. Second, we introduce collaborative causal theory formation (CCTF) as a key capability for establishing a sociotechnical frame that incorporates diverse mental models and associated causal theories in modeling the problem and solution space for ML-based products. Finally, we identify community based system dynamics (CBSD) as a powerful, transparent and rigorous approach for practicing CCTF during all phases of the ML product development process. We conclude with a discussion of how these systems theoretic approaches to understand the societal context within which sociotechnical systems are embedded can improve the development of fair and inclusive ML-based products.
Abstract:Recent research on algorithmic fairness has highlighted that the problem formulation phase of ML system development can be a key source of bias that has significant downstream impacts on ML system fairness outcomes. However, very little attention has been paid to methods for improving the fairness efficacy of this critical phase of ML system development. Current practice neither accounts for the dynamic complexity of high-stakes domains nor incorporates the perspectives of vulnerable stakeholders. In this paper we introduce community based system dynamics (CBSD) as an approach to enable the participation of typically excluded stakeholders in the problem formulation phase of the ML system development process and facilitate the deep problem understanding required to mitigate bias during this crucial stage.