Abstract:Text-based person search is the task of finding person images that are the most relevant to the natural language text description given as query. The main challenge of this task is a large gap between the target images and text queries, which makes it difficult to establish correspondence and distinguish subtle differences across people. To address this challenge, we introduce an efficient encoder-decoder model that extracts coarse-to-fine embedding vectors which are semantically aligned across the two modalities without supervision for the alignment. There is another challenge of learning to capture fine-grained information with only person IDs as supervision, where similar body parts of different individuals are considered different due to the lack of part-level supervision. To tackle this, we propose a novel ranking loss, dubbed commonality-based margin ranking loss, which quantifies the degree of commonality of each body part and reflects it during the learning of fine-grained body part details. As a consequence, it enables our method to achieve the best records on three public benchmarks.
Abstract:Attribute-based person search is the task of finding person images that are best matched with a set of text attributes given as query. The main challenge of this task is the large modality gap between attributes and images. To reduce the gap, we present a new loss for learning cross-modal embeddings in the context of attribute-based person search. We regard a set of attributes as a category of people sharing the same traits. In a joint embedding space of the two modalities, our loss pulls images close to their person categories for modality alignment. More importantly, it pushes apart a pair of person categories by a margin determined adaptively by their semantic distance, where the distance metric is learned end-to-end so that the loss considers importance of each attribute when relating person categories. Our loss guided by the adaptive semantic margin leads to more discriminative and semantically well-arranged distributions of person images. As a consequence, it enables a simple embedding model to achieve state-of-the-art records on public benchmarks without bells and whistles.