Abstract:This paper presents the Global and Local Confidence Graph Neural Network (GLC-GNN), an innovative approach to graph-based anomaly detection that addresses the challenges of heterophily and camouflage in fraudulent activities. By introducing a prototype to encapsulate the global features of a graph and calculating a Global Confidence (GC) value for each node, GLC-GNN effectively distinguishes between benign and fraudulent nodes. The model leverages GC to generate attention values for message aggregation, enhancing its ability to capture both homophily and heterophily. Through extensive experiments on four open datasets, GLC-GNN demonstrates superior performance over state-of-the-art models in accuracy and convergence speed, while maintaining a compact model size and expedited training process. The integration of global and local confidence measures in GLC-GNN offers a robust solution for detecting anomalies in graphs, with significant implications for fraud detection across diverse domains.
Abstract:Robot design has traditionally been costly and labor-intensive. Despite advancements in automated processes, it remains challenging to navigate a vast design space while producing physically manufacturable robots. We introduce Text2Robot, a framework that converts user text specifications and performance preferences into physical quadrupedal robots. Within minutes, Text2Robot can use text-to-3D models to provide strong initializations of diverse morphologies. Within a day, our geometric processing algorithms and body-control co-optimization produce a walking robot by explicitly considering real-world electronics and manufacturability. Text2Robot enables rapid prototyping and opens new opportunities for robot design with generative models.
Abstract:We introduce SonicSense, a holistic design of hardware and software to enable rich robot object perception through in-hand acoustic vibration sensing. While previous studies have shown promising results with acoustic sensing for object perception, current solutions are constrained to a handful of objects with simple geometries and homogeneous materials, single-finger sensing, and mixing training and testing on the same objects. SonicSense enables container inventory status differentiation, heterogeneous material prediction, 3D shape reconstruction, and object re-identification from a diverse set of 83 real-world objects. Our system employs a simple but effective heuristic exploration policy to interact with the objects as well as end-to-end learning-based algorithms to fuse vibration signals to infer object properties. Our framework underscores the significance of in-hand acoustic vibration sensing in advancing robot tactile perception.